Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nano Lett ; 23(19): 8947-8952, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734032

RESUMO

The optical and electronic properties of multilayer transition metal dichalcogenides differ significantly from their monolayer counterparts due to interlayer interactions. The separation of individual layers can be tuned in a controlled way by applying pressure. Here, we use a diamond anvil cell to compress bilayers of 2H-MoS2 in the gigapascal range. By measuring optical transmission spectra, we find that increasing pressure leads to a decrease in the energy splitting between the A and the interlayer exciton. Comparing our experimental findings with ab initio calculations, we conclude that the observed changes are not due to the commonly assumed hydrostatic compression. This effect is attributed to the MoS2 bilayer adhering to the diamond, which reduces the in-plane compression. Moreover, we demonstrate that the distinct real-space distributions and resulting contributions from the valence band account for the different pressure dependencies of the inter- and intralayer excitons in compressed MoS2 bilayers.

2.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318367

RESUMO

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Assuntos
Diamante , Lasers , Difração de Raios X , Pressão , Raios X
3.
J Chem Phys ; 138(5): 054505, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23406131

RESUMO

The equation of state (EoS), refractive index n, and polarizability α of water have been determined up to 673 K and 7 GPa from acoustic velocity measurements conducted in a resistively heated diamond anvil cell using Brillouin scattering spectroscopy. Measured acoustic velocities compare favorably with previous experimental studies but they are lower than velocities calculated from the extrapolation of the IAPWS95 equation of state above 3 GPa at 673 K and deviations increase up to 6% at 7 GPa. Densities calculated from the velocity data were used to propose an empirical EoS suitable in the 0.6-7 GPa and 293-673 K range with a total estimated uncertainty of 0.5% or less. The density model and thermodynamic properties derived from the experimental EoS have been compared to several EoS proposed in the literature. The IAPWS95 EoS provides good agreement, although underestimates density by up to 1.2% at 7 GPa and 673 K and the thermodynamic properties deviate greatly (10%-20%) outside the estimated uncertainties above 4 GPa. The refractive index n of liquid water increases linearly with density and do not depend intrinsically on temperature. The polarizability decreases with pressure by less than 4% within the investigated P-T range, suggesting strong intermolecular interactions in H(2)O that are consistent with the prevalence of the hydrogen bond network in the fluid. The results will allow the refinement of interaction potentials that consider polarization effects for a better understanding of solvent-solvent and ion-solvent interactions in aqueous fluids at high pressure and temperature conditions.

4.
J Chem Phys ; 137(22): 224501, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23249011

RESUMO

The thermodynamic properties of a 1 m Na(2)SO(4) solution have been determined to 773 K and 3 GPa from acoustic velocity measurements in externally heated diamond anvil cell using Brillouin spectroscopy. The measured acoustic velocities were inverted to obtain the density of the aqueous electrolyte solution with an accuracy of 0.3%-0.5%, and an equation of state (EoS) valid in the 293-773 K and 0.4-3 GPa range is proposed. The new EoS reproduces the experimental acoustic velocity data with a maximal deviation of 1.5% and allows deriving all thermodynamic properties of the aqueous solution, including isobaric heat capacity (C(P)), thermal expansion (α(P)), and compressibility (ß) with an accuracy better than 3%-8%. The addition of dissolved sulfate species decreases the compressibility of water, consistent with the structure-maker character of SO(4)(2-) ions in solution that enhance the hydrogen-bond network of the solvent.

5.
J Chem Phys ; 128(18): 184503, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18532822

RESUMO

Brillouin scattering measurements of the single-crystal elastic properties of the as-made zeolite silicalite mid R:(C(3)H(7))(4)NFmid R:(4)[Si(96)O(192)]-MFI provides the first experimental evidence for on-axis negative Poisson's ratios (auxeticity) in a synthetic zeolite structure. MFI laterally contracts when compressed and laterally expands when stretched along x(1) and x(2) directions in the (001) plane (nu(12)=-0.061, nu(21)=-0.051). The aggregate Poisson's ratio of MFI, although positive, has an anomalously low value nu=0.175(3) compared to other silicate materials. These results suggest that the template-free MFI-silicalite [Si(96)O(192)] might have potential applications as tunable sieve where molecular discriminating characteristics are adjusted by application of stress along specific axes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...