Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 21(1): 62, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777133

RESUMO

BACKGROUND: Previous studies and own clinical observations of patients with systemic lupus erythematosus (SLE) suggest that SLE harbors distinct immunophenotypes. This heterogeneity might result in differences in response to treatment in different subgroups and obstruct clinical trials. Our aim was to understand how SLE subgroups may differ regarding underlying pathophysiology and characteristic biomarkers. METHODS: In a cross-sectional study, including 378 well-characterized SLE patients and 316 individually matched population controls, we defined subgroups based on the patients' autoantibody profile at inclusion. We selected a core of an antiphospholipid syndrome-like SLE (aPL+ group; positive in the lupus anticoagulant (LA) test and negative for all three of SSA (Ro52 and Ro60) and SSB antibodies) and a Sjögren's syndrome-like SLE (SSA/SSB+ group; positive for all three of SSA (Ro52 and Ro60) and SSB antibodies but negative in the LA test). We applied affinity-based proteomics, targeting 281 proteins, together with well-established clinical biomarkers and complementary immunoassays to explore the difference between the two predefined SLE subgroups. RESULTS: The aPL+ group comprised 66 and the SSA/SSB+ group 63 patients. The protein with the highest prediction power (receiver operating characteristic (ROC) area under the curve = 0.89) for separating the aPL+ and SSA/SSB+ SLE subgroups was integrin beta-1 (ITGB1), with higher levels present in the SSA/SSB+ subgroup. Proteins with the lowest p values comparing the two SLE subgroups were ITGB1, SLC13A3, and CERS5. These three proteins, rheumatoid factor, and immunoglobulin G (IgG) were all increased in the SSA/SSB+ subgroup. This subgroup was also characterized by a possible activation of the interferon system as measured by high KRT7, TYK2, and ETV7 in plasma. In the aPL+ subgroup, complement activation was more pronounced together with several biomarkers associated with systemic inflammation (fibrinogen, α-1 antitrypsin, neutrophils, and triglycerides). CONCLUSIONS: Our observations indicate underlying pathogenic differences between the SSA/SSB+ and the aPL+ SLE subgroups, suggesting that the SSA/SSB+ subgroup may benefit from IFN-blocking therapies while the aPL+ subgroup is more likely to have an effect from drugs targeting the complement system. Stratifying SLE patients based on an autoantibody profile could be a way forward to understand underlying pathophysiology and to improve selection of patients for clinical trials of targeted treatments.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/imunologia , Autoanticorpos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Adulto , Síndrome Antifosfolipídica/terapia , Autoanticorpos/sangue , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Imunoensaio , Imunoglobulina G/sangue , Lúpus Eritematoso Sistêmico/classificação , Lúpus Eritematoso Sistêmico/terapia , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Síndrome de Sjogren/terapia
2.
Adv Biol Regul ; 67: 128-133, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174395

RESUMO

iTRAQ and TMT reagent-based mass spectrometry (MS) are commonly used technologies for quantitative proteomics in biological samples. Such studies are often performed over multiple MS runs, potentially resulting in introduction of MS run bias that could affect downstream analysis. Such MS data have therefore commonly been normalized using a reference sample which is included in each MS run. We show, however, that reference normalization does not effectively remove systematic MS run bias. A linear model approach was previously proposed to improve on the reference normalization approach but does not computationally scale to larger data sets. Here we describe the NOMAD (normalization of mass spectrometry data) R package which implements a computationally efficient ANOVA normalization approach with protein assembly functionality. NOMAD provides the same advantages as the linear regression solution but is more computationally efficient which allows superior scaling to larger sample sizes. Moreover, NOMAD effectively removes bias which improves valid across MS run comparisons.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA