Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 15(3): plad021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37197712

RESUMO

Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species' strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range. We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C3 or C4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species' average mean annual temperature and annual precipitation across its range as a function of CSR scores. Values for competitiveness were higher in C4 species than in C3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation. The findings presented here demonstrate that CSR classification of functional strategies based on leaf traits matches expectations for the adaptations of grass species that underlie lifespan, photosynthetic type, naturalization and climate.

2.
Microorganisms ; 10(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36363806

RESUMO

Billions of microbes sculpt the gut ecosystem, affecting physiology. Since endurance athletes' performance is often physiology-limited, understanding the composition and interactions within athletes' gut microbiota could improve performance. Individual studies describe differences in the relative abundance of bacterial taxa in endurance athletes, suggesting the existence of an "endurance microbiota", yet the taxa identified are mostly non-overlapping. To narrow down the source of this variation, we created a bioinformatics workflow and reanalyzed fecal microbiota from four 16S rRNA gene sequence datasets associated with endurance athletes and controls, examining diversity, relative abundance, correlations, and association networks. There were no significant differences in alpha diversity among all datasets and only one out of four datasets showed a significant overall difference in bacterial community abundance. When bacteria were examined individually, there were no genera with significantly different relative abundance in all four datasets. Two genera were significantly different in two datasets (Veillonella and Romboutsia). No changes in correlated abundances were consistent across datasets. A power analysis using the variance in relative abundance detected in each dataset indicated that much larger sample sizes will be necessary to detect a modest difference in relative abundance especially given the multitude of covariates. Our analysis confirms several challenges when comparing microbiota in general, and indicates that microbes consistently or universally associated with human endurance remain elusive.

3.
Nat Commun ; 13(1): 4683, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050293

RESUMO

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.


Assuntos
Biodiversidade , Traqueófitas , Ecossistema , Plantas
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504011

RESUMO

The tropical conservatism hypothesis (TCH) posits that the latitudinal gradient in biological diversity arises because most extant clades of animals and plants originated when tropical environments were more widespread and because the colonization of colder and more seasonal temperate environments is limited by the phylogenetically conserved environmental tolerances of these tropical clades. Recent studies have claimed support of the TCH, indicating that temperate plant diversity stems from a few more recently derived lineages that are nested within tropical clades, with the colonization of the temperate zone being associated with key adaptations to survive colder temperatures and regular freezing. Drought, however, is an additional physiological stress that could shape diversity gradients. Here, we evaluate patterns of evolutionary diversity in plant assemblages spanning the full extent of climatic gradients in North and South America. We find that in both hemispheres, extratropical dry biomes house the lowest evolutionary diversity, while tropical moist forests and many temperate mixed forests harbor the highest. Together, our results support a more nuanced view of the TCH, with environments that are radically different from the ancestral niche of angiosperms having limited, phylogenetically clustered diversity relative to environments that show lower levels of deviation from this niche. Thus, we argue that ongoing expansion of arid environments is likely to entail higher loss of evolutionary diversity not just in the wet tropics but in many extratropical moist regions as well.


Assuntos
Adaptação Fisiológica , Biodiversidade , Evolução Biológica , Mudança Climática , Magnoliopsida/fisiologia , Filogeografia , Florestas , Filogenia
5.
Am J Bot ; 107(12): 1815-1830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370466

RESUMO

PREMISE: Cryptic species are evolutionarily distinct lineages lacking distinguishing morphological traits. Hidden diversity may be lurking in widespread species whose distributions cross phylogeographic barriers. This study investigates molecular and morphological variation in the widely distributed Caulanthus lasiophyllus (Brassicaceae) in comparison to its closest relatives. METHODS: Fifty-two individuals of C. lasiophyllus from across the species' range were sequenced for the nuclear ribosomal internal transcribed spacer region (ITS) and the chloroplast trnL-F region. A subset of these samples were examined for the chloroplast ndhF gene. All 52 individuals were scored for 13 morphological traits, as well as monthly and annual climate conditions at the collection locality. Morphological and molecular results are compared with the closest relatives-C. anceps and C. flavescens-in the "Guillenia Clade." To test for polyploidy, genome size estimates were made for four populations. RESULTS: Caulanthus lasiophyllus consists of two distinct lineages separated by eight ITS differences-eight times more variation than what distinguishes C. anceps and C. flavescens. Fewer variable sites were detected in trnL-F and ndhF regions, yet these data are consistent with the ITS results. The two lineages of C. lasiophyllus are geographically and climatically distinct; yet morphologically overlapping. Their genome sizes are not consistently different. CONCLUSIONS: Two cryptic species within C. lasiophyllus are distinguished at the molecular, geographic, and climatic scales. They have similar genome sizes and are morphologically broadly overlapping, but an ephemeral basal leaf character may help distinguish the species.


Assuntos
DNA de Cloroplastos , Mostardeira , Sequência de Bases , California , Variação Genética , Filogenia , Análise de Sequência de DNA
6.
Sci Total Environ ; 730: 139096, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388110

RESUMO

Various environmental challenges are rapidly threatening ecosystems and societies globally. Major interventions and a strategic approach are required to minimize harm and to avoid reaching catastrophic tipping points. Setting evidence-based priorities aids maximizing the impact of the limited resources available for environmental interventions. Focusing on protecting both food security and biodiversity, international experts prioritized major environmental challenges for intervention based on three comprehensive criteria - importance, neglect, and tractability. The top priorities differ between food security and biodiversity. For food security, the top priorities are pollinator loss, soil compaction, and nutrient depletion, and for biodiversity conservation, ocean acidification and land and sea use (especially habitat degradation) are the main concerns. While climate change might be the most pressing environmental challenge and mitigation is clearly off-track, other issues rank higher because of climate change's high attention in research. Research and policy agendas do not yet consistently cover these priorities. Thus, a shift in attention towards the high-priority environmental challenges, identified here, is needed to increase the effectiveness of global environmental protection.


Assuntos
Abastecimento de Alimentos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Concentração de Íons de Hidrogênio , Água do Mar
7.
Anal Chem ; 92(10): 6949-6957, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32297730

RESUMO

High rates of glycolysis in tumors have been associated with cancer metastasis, tumor recurrence, and poor outcomes. In this light, single cells that exhibit high glycolysis are specific targets for therapy. However, the study of these cells requires efficient tools for their isolation. We use a droplet microfluidic technique developed in our lab, Sorting by Interfacial Tension (SIFT), to isolate cancer cell subpopulations based on glycolysis without the use of labels or active sorting components. By controlling the flow conditions on chip, the threshold of selection can be modified, enabling the isolation of cells with different levels of glycolysis. Hypoxia in tumors, that can be simulated with treatment with CoCl2, leads to an increase in glycolysis, and more dangerous tumors. The device was used to enrich CoCl2 treated MDA-MB 231 breast cancer cells from an untreated population. It is also used to sort K562 human chronic myelogenous leukemia cells that have either been treated or untreated with 2-deoxy-d-glucose (2DG), a pharmaceutical that targets cell metabolism. The technique provides a facile and robust way of separating cells based on elevated glycolytic activity; a biomarker associated with cancer cell malignancy.


Assuntos
Separação Celular , Dispositivos Lab-On-A-Chip , Análise de Célula Única , Linhagem Celular Tumoral , Glicólise , Humanos
8.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32063745

RESUMO

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

9.
Ambio ; 49(1): 231-244, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31201614

RESUMO

A variety of rewilding initiatives are being implemented across Europe, generally characterized by a more functionalist approach to nature management compared to the classic compositional approach. To address the increasing need for a framework to support implementation of rewilding in practical management, we present TRAAIL-Trophic Rewilding Advancement in Anthropogenically Impacted Landscapes. TRAAIL has been co-produced with managers and other stakeholders and provides managers with a framework to categorize rewilding initiatives and to link conventional nature management and rewilding by guiding steps towards a higher degree of self-regulation. Applying TRAAIL to data obtained in a Danish survey of rewilding-inspired initiatives we find that out of 44 initiatives there is no "Full rewilding" initiatives, 3 "Near-full rewilding" initiatives, 23 "Partial rewilding" initiatives, 2 "minimal rewilding" initiatives and 16 "Effort-intensive conservation management" initiatives. This study shows how TRAAIL can guide and inform trophic rewilding on a local and national scale.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Europa (Continente)
10.
Sci Adv ; 5(11): eaaz0414, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31807712

RESUMO

A key feature of life's diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth's plant biodiversity that are rare. A large fraction, ~36.5% of Earth's ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth's plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.


Assuntos
Biodiversidade , Mudança Climática , Embriófitas , Espécies em Perigo de Extinção , Extinção Biológica , Embriófitas/classificação , Embriófitas/crescimento & desenvolvimento
11.
PLoS One ; 14(11): e0198308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697680

RESUMO

Recently, several wild or semi-wild herds of European bison have been reintroduced across Europe. It is essential for future successful bison reintroductions to know how the European bison use different habitats, which environmental parameters drive their habitat selection, and whether their habitat use and behavioural patterns in new reintroduction sites differ from habitats where European bison have been roaming freely for a long time. Here, we address these questions for a 40-ha enclosed site that has been inhabited by semi-free ranging European bison since 2012. The site, Vorup Meadows, is adjacent to the Gudenå river in Denmark and consists of human-modified riparian meadows. During 2013 we monitored the behavioural pattern and spatial use of the 11 bison present and in parallel carried out floristic analyses to assess habitat structure and food quality in the enclosure. We tested habitat use and selection against environmental parameters such as habitat characteristics, plant community traits, topography, and management area (release area vs. meadow area) using linear regression and spatial models. The bison herd had comparable diurnal activity patterns as observed in previous studies on free-roaming bison herds. Topography emerged as the main predictor of the frequency of occurrence in our spatial models, with high-lying drier areas being used more. Bison did not prefer open areas over areas with tree cover when accounting for habitat availability. However, they spent significantly more time in the release area, a former agricultural field with supplementary fodder, than expected from availability compared to the rest of the enclosure, a meadow with tree patches. We wish to increase awareness of possible long-term ethological effects of the release site and the management protocols accomplished here that might reduce the ecological impact by the bison in the target habitat, and thereby compromise or even oppose the conservation goals of the conservation efforts.


Assuntos
Comportamento Animal/fisiologia , Bison/fisiologia , Agricultura/métodos , Animais , Ecossistema , Europa (Continente) , Feminino , Árvores/fisiologia
12.
Ecol Evol ; 9(11): 6678-6692, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236252

RESUMO

The dramatic climate fluctuations of the late Quaternary have influenced the diversity and composition of macroorganism communities, but how they structure belowground microbial communities is less well known. Fungi constitute an important component of soil microorganism communities. They play an important role in biodiversity maintenance, community assembly, and ecosystem functioning, and differ from many macroorganisms in many traits. Here, we examined soil fungal communities in Chinese temperate, subtropical, and tropic forests using Illumina MiSeq sequencing of the fungal ITS1 region. The relative effect of late Quaternary climate change and contemporary environment (plant, soil, current climate, and geographic distance) on the soil fungal community was analyzed. The richness of the total fungal community, along with saprotrophic, ectomycorrhizal (EM), and pathogenic fungal communities, was influenced primarily by the contemporary environment (plant and/or soil) but not by late Quaternary climate change. Late Quaternary climate change acted in concert with the contemporary environment to shape total, saprotrophic, EM, and pathogenic fungal community compositions and with a stronger effect in temperate forest than in tropic-subtropical forest ecosystems. Some contemporary environmental factors influencing total, saprotrophic, EM, and pathogenic fungal communities in temperate and tropic-subtropical forests were different. We demonstrate that late Quaternary climate change can help to explain current soil fungal community composition and argue that climatic legacies can help to predict soil fungal responses to climate change.

13.
Ecol Lett ; 22(7): 1126-1135, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31066203

RESUMO

Latitudinal and elevational richness gradients have received much attention from ecologists but there is little consensus on underlying causes. One possible proximate cause is increased levels of species turnover, or ß diversity, in the tropics compared to temperate regions. Here, we leverage a large botanical dataset to map taxonomic and phylogenetic ß diversity, as mean turnover between neighboring 100 × 100 km cells, across the Americas and determine key climatic drivers. We find taxonomic and tip-weighted phylogenetic ß diversity is higher in the tropics, but that basal-weighted phylogenetic ß diversity is highest in temperate regions. Supporting Janzen's 'mountain passes' hypothesis, tropical mountainous regions had higher ß diversity than temperate regions for taxonomic and tip-weighted metrics. The strongest climatic predictors of turnover were average temperature and temperature seasonality. Taken together, these results suggest ß diversity is coupled to latitudinal richness gradients and that temperature is a major driver of plant community composition and change.


Assuntos
Biodiversidade , Plantas , Temperatura , Filogenia
14.
Nat Ecol Evol ; 2(12): 1906-1917, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455437

RESUMO

Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait-environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.


Assuntos
Características de História de Vida , Dispersão Vegetal , Plantas , Florestas , Pradaria
15.
Glob Chang Biol ; 24(12): 5789-5801, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30238566

RESUMO

The satellite record has revealed substantial land surface "greening" in the northern hemisphere over recent decades. Process-based Earth system models (ESMs) attribute enhanced vegetation productivity (greening) to CO2 fertilisation. However, the models poorly reproduce observed spatial patterns of greening, suggesting that they ignore crucial processes. Here, we explore whether fine-scale land cover dynamics, as modified by ecological and land-use processes, can explain the discrepancy between models and satellite-based estimates of greening. We used 500 m satellite-derived Leaf Area Index (LAI) to quantify greening. We focus on semi-natural vegetation in Europe, and distinguish between conservation areas and unprotected land. Within these ecological and land-use categories, we then explored the relationships between vegetation change and major climatic gradients. Despite the relatively short time-series (15 years), we found a strong overall increase in LAI (i.e., greening) across all European semi-natural vegetation types. The spatial pattern of vegetation change identifies land-use change, particularly land abandonment, as a major initiator of vegetation change both in- and outside of protected areas. The strongest LAI increases were observed in mild climates, consistent with more vigorous woody regrowth after cessation of intensive management in these environments. Surprisingly, rates of vegetation change within protected areas did not differ significantly from unprotected semi-natural vegetation. Overall, the detected LAI increases are consistent with previous, coarser-scale, studies. The evidence indicates that woody regrowth following land abandonment is an important driver of land surface greening throughout Europe. The results offer an explanation for the large discrepancies between ESM-derived and satellite-derived greening estimates and thus generate new avenues for improving the ESMs on which we rely for crucial climate forecasts.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Fenômenos Fisiológicos Vegetais , Clima , Europa (Continente) , Desenvolvimento Vegetal , Astronave
16.
R Soc Open Sci ; 5(3): 171366, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657753

RESUMO

Reconstructing the processes that have shaped the emergence of biodiversity gradients is critical to understand the dynamics of diversification of life on Earth. Islands have traditionally been used as model systems to unravel the processes shaping biological diversity. MacArthur and Wilson's island biogeographic model predicts diversity to be based on dynamic interactions between colonization and extinction rates, while treating islands themselves as geologically static entities. The current spatial configuration of islands should influence meta-population dynamics, but long-term geological changes within archipelagos are also expected to have shaped island biodiversity, in part by driving diversification. Here, we compare two mechanistic models providing inferences on species richness at a biogeographic scale: a mechanistic spatial-temporal model of species diversification and a spatial meta-population model. While the meta-population model operates over a static landscape, the diversification model is driven by changes in the size and spatial configuration of islands through time. We compare the inferences of both models to floristic diversity patterns among land patches of the Indo-Australian Archipelago. Simulation results from the diversification model better matched observed diversity than a meta-population model constrained only by the contemporary landscape. The diversification model suggests that the dynamic re-positioning of islands promoting land disconnection and reconnection induced an accumulation of particularly high species diversity on Borneo, which is central within the island network. By contrast, the meta-population model predicts a higher diversity on the mainlands, which is less compatible with empirical data. Our analyses highlight that, by comparing models with contrasting assumptions, we can pinpoint the processes that are most compatible with extant biodiversity patterns.

17.
Am J Bot ; 105(3): 614-622, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29603138

RESUMO

Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.


Assuntos
Disseminação de Informação , Gestão da Informação , Filogenia , Plantas/genética , DNA de Plantas , Humanos , Tecnologia da Informação , Análise de Sequência de DNA
18.
Nature ; 553(7687): 199-202, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29258291

RESUMO

Understanding global patterns of biodiversity change is crucial for conservation research, policies and practices. However, for most ecosystems, the lack of systematically collected data at a global level limits our understanding of biodiversity changes and their local-scale drivers. Here we address this challenge by focusing on wetlands, which are among the most biodiverse and productive of any environments and which provide essential ecosystem services, but are also amongst the most seriously threatened ecosystems. Using birds as an indicator taxon of wetland biodiversity, we model time-series abundance data for 461 waterbird species at 25,769 survey sites across the globe. We show that the strongest predictor of changes in waterbird abundance, and of conservation efforts having beneficial effects, is the effective governance of a country. In areas in which governance is on average less effective, such as western and central Asia, sub-Saharan Africa and South America, waterbird declines are particularly pronounced; a higher protected area coverage of wetland environments facilitates waterbird increases, but only in countries with more effective governance. Our findings highlight that sociopolitical instability can lead to biodiversity loss and undermine the benefit of existing conservation efforts, such as the expansion of protected area coverage. Furthermore, data deficiencies in areas with less effective governance could lead to underestimations of the extent of the current biodiversity crisis.


Assuntos
Biodiversidade , Aves , Conservação dos Recursos Naturais/legislação & jurisprudência , Cooperação Internacional , Áreas Alagadas , África , Animais , Ásia , Aves/classificação , Mapeamento Geográfico , Densidade Demográfica , América do Sul , Especificidade da Espécie
19.
Ecol Lett ; 20(3): 293-306, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28145038

RESUMO

The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state.


Assuntos
Biota , Mudança Climática , Ecologia/métodos , Modelos Biológicos , Dinâmica Populacional
20.
Ann Bot ; 119(2): 279-288, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578766

RESUMO

BACKGROUND AND AIMS: Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. METHODS: We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. KEY RESULTS: Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year-1), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year-1). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. CONCLUSIONS: Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions.


Assuntos
Clima , Poaceae , Mudança Climática , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...