Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 828
Filtrar
1.
J Phys Chem Lett ; 15(18): 4844-4850, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38682807

RESUMO

Most single quantum emitters display non-steady emission properties. Models that explain this effect have primarily relied on photoluminescence measurements that reveal variations in intensity, wavelength, and excited-state lifetime. While photoluminescence excitation spectroscopy could provide complementary information, existing experimental methods cannot collect spectra before individual emitters change in intensity (blink) or wavelength (spectrally diffuse). Here, we present an experimental approach that circumvents such issues, allowing the collection of excitation spectra from individual emitters. Using rapid modulation of the excitation wavelength, we collect and classify excitation spectra from individual CdSe/CdS/ZnS core/shell/shell quantum dots. The spectra, along with simultaneous time-correlated single-photon counting, reveal two separate emission-reduction mechanisms caused by charging and trapping, respectively. During bright emission periods, we also observe a correlation between emission red-shifts and the increased oscillator strength of higher excited states. Quantum-mechanical modeling indicates that diffusion of charges in the vicinity of an emitter polarizes the exciton and transfers the oscillator strength to higher-energy transitions.

2.
EBioMedicine ; 102: 105072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518653

RESUMO

BACKGROUND: Neurofilament light chain (NfL) is a biomarker for axonal damage in several neurological disorders. We studied the longitudinal changes in serum NfL in patients with Guillain-Barré syndrome (GBS) in relation to disease severity, electrophysiological subtype, treatment response, and prognosis. METHODS: We included patients with GBS who participated in a double-blind, randomised, placebo-controlled trial that evaluated the effects of a second course of intravenous immunoglobulin (IVIg) on clinical outcomes. Serum NfL levels were measured before initiation of treatment and at one, two, four, and twelve weeks using a Simoa HD-X Analyzer. Serum NfL dynamics were analysed using linear mixed-effects models. Logistic regression was employed to determine the associations of serum NfL with clinical outcome and the prognostic value of serum NfL after correcting for known prognostic markers included in the modified Erasmus GBS Outcome Score (mEGOS). FINDINGS: NfL levels were tested in serum from 281 patients. Serum NfL dynamics were associated with disease severity and electrophysiological subtype. Strong associations were found between high levels of serum NfL at two weeks and inability to walk unaided at four weeks (OR = 1.74, 95% CI = 1.27-2.45), and high serum NfL levels at four weeks and inability to walk unaided at 26 weeks (OR = 2.79, 95% CI = 1.72-4.90). Baseline serum NfL had the most significant prognostic value for ability to walk, independent of predictors included in the mEGOS. The time to regain ability to walk unaided was significantly longer for patients with highest serum NfL levels at baseline (p = 0.0048) and week 2 (p < 0.0001). No differences in serum NfL were observed between patients that received a second IVIg course vs. IVIg and placebo. INTERPRETATION: Serum NfL levels are associated with disease severity, axonal involvement, and poor outcome in GBS. Serum NfL potentially represents a biomarker to monitor neuronal damage in GBS and an intermediate endpoint to evaluate the effects of treatment. FUNDING: Prinses Beatrix Spierfonds W.OR19-24.


Assuntos
Síndrome de Guillain-Barré , Humanos , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/tratamento farmacológico , Prognóstico , Imunoglobulinas Intravenosas/uso terapêutico , Resultado do Tratamento , Filamentos Intermediários , Biomarcadores , Proteínas de Neurofilamentos
3.
Cancers (Basel) ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398190

RESUMO

Approximately 10-12% of patients with oesophageal or gastric cancer (OGC) present with oligometastatic disease at diagnosis. It remains unclear if there is a role for radical surgery in these patients. We aimed to assess the outcomes of OGC patients who underwent simultaneous treatment for the primary tumour and synchronous liver metastases. Patients with OGC who underwent surgical treatment between 2008 and 2020 for the primary tumour and up to five synchronous liver metastases aiming for complete tumour removal or ablation (i.e., no residual tumour) were identified from four institutional databases. The primary outcome was overall survival (OS), calculated with the Kaplan-Meier method. Secondary outcomes were disease-free survival and postoperative outcomes. Thirty-one patients were included, with complete follow-up data for 30 patients. Twenty-six patients (84%) received neoadjuvant therapy followed by response evaluation. Median OS was 21 months [IQR 9-36] with 2- and 5-year survival rates of 43% and 30%, respectively. While disease recurred in 80% of patients (20 of 25 patients) after radical resection, patients with a solitary liver metastasis had a median OS of 34 months. The number of liver metastases was a prognostic factor for OS (solitary metastasis aHR 0.330; p-value = 0.025). Thirty-day mortality was zero and complications occurred in 55% of patients. Long-term survival can be achieved in well-selected patients who undergo surgical resection of the primary tumour and local treatment of synchronous liver metastases. In particular, patients with a solitary liver metastasis seem to have a favourable prognosis.

4.
Angew Chem Int Ed Engl ; 63(12): e202319414, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38295149

RESUMO

Efficient plastic recycling processes are crucial for the production of value-added products or intermediates. Here, we present a multicatalytic route that allows the degradation of nitrile-butadiene rubber, cross-metathesis of the formed oligomers, and polymerization of the resulting dicarboxylic acids with bio-based diols, providing direct access to unsaturated polyesters. This one-pot approach combines the use of commercially available catalysts that are active and selective under mild conditions to synthesize renewable copolymers without the need to isolate intermediates.

5.
Anaesthesiologie ; 73(2): 77-84, 2024 02.
Artigo em Alemão | MEDLINE | ID: mdl-38066215

RESUMO

Big data and artificial intelligence are buzzwords that everyone is talking about and yet always provide a touch of science fiction to the scenery. What is the status of these topics in anesthesia? Are the first robots already rolling through the corridors while doctors are getting bored as all the work has been done? Spoiler alert! We are still far away from achieving this. Initially, paper charts and analogue notes stand in the way of comprehensive digitization. Source systems need to be merged and data standardized, harmonized and validated. Therefore, the friendly android that is rolling towards us, waving and holding a freshly brewed cup of coffee in our thoughts will have to wait; however, a glimpse of the future is already evident in some clinics and the first promising developments are already showing what could be the standard tomorrow. Learning algorithms calculate the length of stay individually for each patient in the intensive care unit (ICU), reducing negative consequences such as readmission and mortality. The field of ultrasound technology for regional anesthesia and closed-loop anesthesia systems is also demonstrating the benefits of artificial intelligence (AI)-assisted technologies in practice. The efforts are diverse and ambitious but they repeatedly collide with privacy challenges and significant capital expenditure, which weigh heavily on an already financially strained healthcare system; however, anyone who listens carefully to the medical staff knows that robots are not what they would expect and the buzzwords big data and artificial intelligence might be less science fiction than initially assumed.


Assuntos
Anestesia por Condução , Médicos , Humanos , Inteligência Artificial , Big Data , Algoritmos
6.
Angew Chem Int Ed Engl ; 63(4): e202316628, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059917

RESUMO

Important biological processes, such as signaling and transport, are regulated by dynamic binding events. The development of artificial supramolecular systems in which binding between different components is controlled could help emulate such processes. Herein, we describe stiff-stilbene-containing macrocycles that can be switched between (Z)- and (E)-isomers by light, as demonstrated by UV/Vis and 1 H NMR spectroscopy. The (Z)-isomers can be effectively threaded by pyridinium halide axles to give pseudorotaxane complexes, as confirmed by 1 H NMR titration studies and single-crystal X-ray crystallography. The overall stability of these complexes can be tuned by varying the templating counteranion. However, upon light-induced isomerization to the (E)-isomer, the threading capability is drastically reduced. The axle component, in addition, can form a heterodimeric complex with a secondary isophthalamide host. Therefore, when all components are combined, light irradiation triggers axle exchange between the macrocycle and this secondary host, which has been monitored by 1 H NMR spectroscopy and simulated computationally.

7.
J Med Chem ; 66(23): 15648-15670, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051674

RESUMO

Leucettinibs are substituted 2-aminoimidazolin-4-ones (inspired by the marine sponge natural product Leucettamine B) developed as pharmacological inhibitors of DYRK1A (dual-specificity, tyrosine phosphorylation-regulated kinase 1A), a therapeutic target for indications such as Down syndrome and Alzheimer's disease. Leucettinib-21 was selected as a drug candidate following extensive structure/activity studies and multiparametric evaluations. We here report its physicochemical properties (X-ray powder diffraction, differential scanning calorimetry, stability, solubility, crystal structure) and drug-like profile. Leucettinib-21's selectivity (analyzed by radiometric, fluorescence, interaction, thermal shift, residence time assays) reveals DYRK1A as the first target but also some "off-targets" which may contribute to the drug's biological effects. Leucettinib-21 was cocrystallized with CLK1 and modeled in the DYRK1A structure. Leucettinib-21 inhibits DYRK1A in cells (demonstrated by direct catalytic activity and phosphorylation levels of Thr286-cyclin D1 or Thr212-Tau). Leucettinib-21 corrects memory disorders in the Down syndrome mouse model Ts65Dn and is now entering safety/tolerance phase 1 clinical trials.


Assuntos
Doença de Alzheimer , Síndrome de Down , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Síndrome de Down/tratamento farmacológico , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Imidazolidinas/química , Imidazolidinas/farmacologia
8.
Cerebrovasc Dis Extra ; 13(1): 97-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37931606

RESUMO

INTRODUCTION: Acute mechanical thrombectomy (MT) is the preferred treatment for large vessel occlusion-related stroke. Histopathological research on the obtained occlusive embolic thrombus may provide information regarding the aetiology and pathology of the lesion to predict prognosis and propose possible future acute ischaemic stroke therapy. METHODS: A total of 75 consecutive patients who presented to the Amphia Hospital with acute large vessel occlusion-related stroke and underwent MT were included in the study. The obtained thrombus materials were subjected to standard histopathological examination. Based on histological criteria, they were considered fresh (<1 day old) or old (>1 day old). Patients were followed for 2 years for documentation of all-cause mortality. RESULTS: Thrombi were classified as fresh in 40 patients (53%) and as older in 35 patients (47%). Univariate Cox regression analysis showed that thrombus age, National Institutes of Health Stroke Scale at hospital admission, and patient age were associated with long-term mortality (p < 0.1). Multivariable Cox hazards and Kaplan-Meier analysis demonstrated that after extensive adjustment for clinical and procedural variables, thrombus age persisted in being independently associated with higher long-term mortality (hazard ratio: 3.34; p = 0.038, log-rank p = 0.013). CONCLUSION: In this study, older thromboemboli are responsible for almost half of acute large ischaemic strokes. Moreover, the presence of an old thrombus is an independent predictor of mortality in acute large vessel occlusion-related stroke. More research is warranted regarding future therapies based on thrombus composition.


Assuntos
Arteriopatias Oclusivas , Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Prognóstico , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , Trombectomia/efeitos adversos , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Trombose/diagnóstico por imagem , Trombose/terapia , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/etiologia , Arteriopatias Oclusivas/complicações , Estudos Retrospectivos
9.
Front Genet ; 14: 1289015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908589

RESUMO

Introduction: Specific alleles in human leukocyte antigens (HLAs) are associated with an increased risk of developing drug hypersensitivity reactions induced by abacavir, allopurinol, carbamazepine, oxcarbazepine, phenytoin, lamotrigine, or flucloxacillin. Transplant patients are genotyped for HLA as a routine practice to match a potential donor to a recipient. This study aims to investigate the feasibility and potential impact of repurposing these HLA genotype data from kidney transplant patients to prevent drug hypersensitivity reactions. Methods: A cohort of 1347 kidney transplant recipients has been genotyped in the Leiden University Medical Center (LUMC) using next-generation sequencing (NGS). The risk alleles HLA-A*31:01, HLA-B*15:02, HLA-B*15:11, HLA-B*57:01, and HLA-B*58:01 were retrieved from the NGS data. Medical history, medication use, and allergic reactions were obtained from the patient's medical records. Carrier frequencies found were compared to a LUMC blood donor population. Results: A total of 13.1% of transplant cohort patients carried at least one of the five HLA risk alleles and therefore had an increased risk of drug-induced hypersensitivity for specific drugs. HLA-A*31:01, HLA-B*15:02, HLA-B*57:01, and HLA-B*58:01 were found in carrier frequencies of 4.61%, 1.19%, 4.46%, and 3.35% respectively. No HLA-B*15:11 carrier was found. In total nine HLA-B*57:01 carriers received flucloxacillin and seven HLA-B*58:01 carriers within our cohort received allopurinol. Discussion: Our study shows that repurposing HLA genotype data from transplantation patients for the assignment of HLA risk alleles associated with drug hypersensitivity is feasible. The use of these data by physicians while prescribing drugs or by the pharmacist when dispensing drugs holds the potential to prevent drug hypersensitivity reactions. The utility of this method was highlighted by 13.1% of the transplant cohort patients carrying an actionable HLA allele.

10.
Sci Data ; 10(1): 808, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978182

RESUMO

Biological trait analysis (BTA) is a valuable tool for evaluating changes in community diversity and its link to ecosystem processes as well as environmental and anthropogenic perturbations. Trait-based analytical techniques like BTA rely on standardised datasets of species traits. However, there are currently only a limited number of datasets available for marine macrobenthos that contain trait data across multiple taxonomic groups. Here, we present an open-access dataset of 16 traits for 235 macrozoobenthic species recorded throughout multiple sampling campaigns of the Dutch Wadden Sea; a dynamic soft bottom system where humans have long played a substantial role in shaping the coastal environment. The trait categories included in this dataset cover a variety of life history strategies that are tightly linked to ecosystem functioning and the resilience of communities to (anthropogenic) perturbations and can advance our understanding of environmental changes and human impacts on the functioning of soft bottom systems.


Assuntos
Ecossistema , Meio Ambiente , Humanos , Biodiversidade , Fenótipo , Animais
11.
ACS Nano ; 17(20): 20053-20061, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37797269

RESUMO

Controlling and understanding reaction temperature variations in catalytic processes are crucial for assessing the performance of a catalyst material. Local temperature measurements are challenging, however. Luminescence thermometry is a promising remote-sensing tool, but it is cross-sensitive to the optical properties of a sample and other external parameters. In this work, we measure spatial variations in the local temperature on the micrometer length scale during carbon dioxide (CO2) methanation over a TiO2-supported Ni catalyst and link them to variations in catalytic performance. We extract local temperatures from the temperature-dependent emission of Y2O3:Nd3+ particles, which are mixed with the CO2 methanation catalyst. Scanning, where a near-infrared laser locally excites the emitting Nd3+ ions, produces a temperature map with a micrometer pixel size. We first designed the Y2O3:Nd3+ particles for optimal temperature precision and characterized cross-sensitivity of the measured signal to parameters other than temperature, such as light absorption by the blackened sample due to coke deposition at elevated temperatures. Introducing reaction gases causes a local temperature increase of the catalyst of on average 6-25 K, increasing with the reactor set temperature in the range of 550-640 K. Pixel-to-pixel variations in the temperature increase show a standard deviation of up to 1.5 K, which are attributed to local variations in the catalytic reaction rate. Mapping and understanding such temperature variations are crucial for the optimization of overall catalyst performance on the nano- and macroscopic scale.

12.
Cell Rep ; 42(10): 113284, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864793

RESUMO

The inherent stochasticity of metabolism raises a critical question for understanding homeostasis: are cellular processes regulated in response to internal fluctuations? Here, we show that, in E. coli cells under constant external conditions, catabolic enzyme expression continuously responds to metabolic fluctuations. The underlying regulatory feedback is enabled by the cyclic AMP (cAMP) and cAMP receptor protein (CRP) system, which controls catabolic enzyme expression based on metabolite concentrations. Using single-cell microscopy, genetic constructs in which this feedback is disabled, and mathematical modeling, we show how fluctuations circulate through the metabolic and genetic network at sub-cell-cycle timescales. Modeling identifies four noise propagation modes, including one specific to CRP regulation. Together, these modes correctly predict noise circulation at perturbed cAMP levels. The cAMP-CRP system may thus have evolved to control internal metabolic fluctuations in addition to external growth conditions. We conjecture that second messengers may more broadly function to achieve cellular homeostasis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Redes Reguladoras de Genes , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica
14.
J Am Chem Soc ; 145(38): 21020-21026, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37712835

RESUMO

Photoisomerization of retinal is pivotal to ion translocation across the bacterial membrane and has served as an inspiration for the development of artificial molecular switches and machines. Light-driven synthetic systems in which a macrocyclic component transits along a nonsymmetric axle in a specific direction have been reported; however, unidirectional and repetitive translocation of protons has not been achieved. Herein, we describe a unique protonation-controlled isomerization behavior for hemi-indigo dyes bearing N-heterocycles, featuring intramolecular hydrogen bonds. Light-induced isomerization from the Z to E isomer is unlocked when protonated, while reverse E → Z photoisomerization occurs in the neutral state. As a consequence, associated protons are displaced in a preferred direction with respect to the photoswitchable scaffold. These results will prove to be critical in developing artificial systems in which concentration gradients can be effectively generated using (solar) light energy.

15.
Nano Lett ; 23(18): 8697-8703, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37672486

RESUMO

Indium phosphide colloidal quantum dots (CQDs) are the main alternative for toxic and restricted Cd based CQDs for lighting and display applications. Here we systematically report on the size-dependent optical absorption, ensemble, and single particle photoluminescence (PL) and biexciton lifetimes of core-only InP CQDs. This systematic study is enabled by improvements in the synthesis of InP CQDs to yield a broad size series of monodisperse core-only InP CQDs with narrow absorption and PL line width and significant PL quantum yield.

16.
Sci Adv ; 9(33): eadd6480, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595032

RESUMO

Organoids are a major new tool to study tissue renewal. However, characterizing the underlying differentiation dynamics remains challenging. Here, we developed TypeTracker, which identifies cell fates by AI-enabled cell tracking and propagating end point fates back along the branched lineage trees. Cells that ultimately migrate to the villus commit to their new type early, when still deep inside the crypt, with important consequences: (i) Secretory cells commit before terminal division, with secretory fates emerging symmetrically in sister cells. (ii) Different secretory types descend from distinct stem cell lineages rather than an omnipotent secretory progenitor. (iii) The ratio between secretory and absorptive cells is strongly affected by proliferation after commitment. (iv) Spatial patterning occurs after commitment through type-dependent cell rearrangements. This "commit-then-sort" model contrasts with the conventional conveyor belt picture, where cells differentiate by moving up the crypt-villus axis and hence raises new questions about the underlying commitment and sorting mechanisms.


Assuntos
Organoides , Diferenciação Celular , Linhagem da Célula , Transporte Biológico , Movimento Celular
17.
Adv Biol (Weinh) ; 7(12): e2300105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409427

RESUMO

Single molecule techniques are particularly well suited for investigating the processes of protein folding and chaperone assistance. However, current assays provide only a limited perspective on the various ways in which the cellular environment can influence the folding pathway of a protein. In this study, a single molecule mechanical interrogation assay is developed and used to monitor protein unfolding and refolding within a cytosolic solution. This allows to test the cumulative topological effect of the cytoplasmic interactome on the folding process. The results reveal a stabilization against forced unfolding for partial folds, which are attributed to the protective effect of the cytoplasmic environment against unfolding and aggregation. This research opens the possibility of conducting single molecule molecular folding experiments in quasi-biological environments.


Assuntos
Dobramento de Proteína , Desdobramento de Proteína
18.
J Am Chem Soc ; 145(28): 15188-15196, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37411010

RESUMO

Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.


Assuntos
Proteínas de Choque Térmico Pequenas , Agregados Proteicos , Humanos , Proteínas de Choque Térmico Pequenas/metabolismo , Mutação , Dobramento de Proteína
19.
J Org Chem ; 88(15): 11328-11334, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37440304

RESUMO

Toward photocontrol of anion transport across the bilayer membrane, stiff-stilbene, which has dimethyl substituents in the five-membered rings, is functionalized with amidopyrrole units. UV-vis and 1H NMR studies show high photostability and photoconversion yields. Where the photoaddressable (E)- and (Z)-isomers exhibit comparable binding affinities, as determined by 1H NMR titrations, fluorescence-based transport assays reveal significantly higher transport activity for the (Z)-isomers. Changing the binding affinity is thus not a necessity for modulating transport. Additionally, transport can be triggered in situ by light.

20.
Nano Lett ; 23(14): 6560-6566, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450686

RESUMO

Ongoing developments in science and technology require temperature measurements at increasingly higher spatial resolutions. Nanocrystals with temperature-sensitive luminescence are a popular thermometer for these applications offering high precision and remote read-out. Here, we demonstrate that ratiometric luminescence thermometry experiments may suffer from systematic errors in nanostructured environments. We place lanthanide-based luminescent nanothermometers at controlled distances of up to 600 nm from a Au surface. Although this geometry supports no absorption or scattering resonances, distortion of the emission spectra of the thermometers due to the modified density of optical states results in temperature read-out errors of up to 250 K. Our simple analytical model explains the effects of thermometer emission frequencies, experimental equipment, and sample properties on the magnitude of the errors. We discuss the relevance of our findings in several experimental scenarios. Such errors do not always occur, but they are expected in measurements near reflecting interfaces or scattering objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...