Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435771

RESUMO

SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRRS2) to facilitate viral-host membrane fusion. ACE2 and TMPRRS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq level, however, biologically relevant protein receptor organization in whole tissues is still poorly understood. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRRS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals were stained using antibodies against ACE2 and TMPRRS2, combined with fluorescent spike protein and SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize expression patterns. The data demonstrates that infection is restricted to sites with both ACE2 and TMPRRS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the terminal bronchioles and alveoli. Conversely, infection completely overlaps at these sites where ACE2 and TMPRSS2 co-localize. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=154 SRC="FIGDIR/small/435771v1_ufig1.gif" ALT="Figure 1"> View larger version (60K): org.highwire.dtl.DTLVardef@150fc65org.highwire.dtl.DTLVardef@1ea6a56org.highwire.dtl.DTLVardef@eb3c43org.highwire.dtl.DTLVardef@1c1877e_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-345363

RESUMO

SARS-CoV-2 emerged in late 2019 and caused a pandemic, whereas the closely related SARS-CoV was contained rapidly in 2003. Here, a newly developed experimental set-up was used to study transmission of SARS-CoV and SARS-CoV-2 through the air between ferrets over more than a meter distance. Both viruses caused a robust productive respiratory tract infection resulting in transmission of SARS-CoV-2 to two of four indirect recipient ferrets and SARS-CoV to all four. A control pandemic A/H1N1 influenza virus also transmitted efficiently. Serological assays confirmed all virus transmission events. Although the experiments did not discriminate between transmission via small aerosols, large droplets and fomites, these results demonstrate that SARS-CoV and SARS-CoV-2 can remain infectious while travelling through the air. Efficient virus transmission between ferrets is in agreement with frequent SARS-CoV-2 outbreaks in mink farms. Although the evidence for airborne virus transmission between humans under natural conditions is absent or weak for SARS-CoV and SARS-CoV-2, ferrets may represent a sensitive model to study interventions aimed at preventing virus transmission.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-282558

RESUMO

Receptor binding studies using recombinant SARS-CoV proteins have been hampered due to challenges in approaches creating spike protein or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric RBD proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric fully glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that fully glycosylated trimeric RBD proteins are attractive to analyze receptor binding and explore ACE2 expression profiles in tissues.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20188185

RESUMO

The SARS-CoV-2 pandemic resulted in shortages of production and test capacity of FFP2-respirators. Such facemasks are required to be worn by healthcare professionals when performing aerosol-generating procedures on COVID-19 patients. In response to the high demand and short supply, we designed three models of facemasks that are suitable for local production. As these facemasks should meet the requirements of an FFP2-certified facemask, the newly-designed facemasks were tested on the filtration efficiency of the filter material, inward leakage, and breathing resistance with custom-made experimental setups. In these tests, the locally-produced facemasks were benchmarked against a commercial FFP2 facemask. Furthermore, the protective capacity of the facemasks was tested for the first time with coronavirus-loaded aerosols under physiologically relevant conditions. This multidisciplinary effort resulted in the design and production of facemasks that meet the FFP2 requirements, and which can be mass-produced at local production facilities.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-264630

RESUMO

Effective clinical intervention strategies for COVID-19 are urgently needed. Although several clinical trials have evaluated the use of convalescent plasma containing virus-neutralizing antibodies, the effectiveness has not been proven. We show that hamsters treated with a high dose of human convalescent plasma or a monoclonal antibody were protected against weight loss showing reduced pneumonia and pulmonary virus replication compared to control animals. However, a ten-fold lower dose of convalescent plasma showed no protective effect. Thus, variable and relatively low levels of virus neutralizing antibodies in convalescent plasma may limit their use for effective antiviral therapy, favouring concentrated, purified (monoclonal) antibodies.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-044503

RESUMO

SARS-CoV-2, a coronavirus that newly emerged in China in late 2019 1,2 and spread rapidly worldwide, caused the first witnessed pandemic sparked by a coronavirus. As the pandemic progresses, information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets. Intranasal inoculation of donor ferrets resulted in a productive upper respiratory tract infection and long-term shedding, up to 11 to 19 days post-inoculation. SARS-CoV-2 transmitted to four out of four direct contact ferrets between 1 and 3 days after exposure and via the air to three out of four independent indirect recipient ferrets between 3 and 7 days after exposure. The pattern of virus shedding in the direct contact and indirect recipient ferrets was similar to that of the inoculated ferrets and infectious virus was isolated from all positive animals, showing that ferrets were productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings 3.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-995639

RESUMO

A novel coronavirus, SARS-CoV-2, was recently identified in patients with an acute respiratory syndrome, COVID-19. To compare its pathogenesis with that of previously emerging coronaviruses, we inoculated cynomolgus macaques with SARS-CoV-2 or MERS-CoV and compared with historical SARS-CoV infections. In SARS-CoV-2-infected macaques, virus was excreted from nose and throat in absence of clinical signs, and detected in type I and II pneumocytes in foci of diffuse alveolar damage and mucous glands of the nasal cavity. In SARS-CoV-infection, lung lesions were typically more severe, while they were milder in MERS-CoV infection, where virus was detected mainly in type II pneumocytes. These data show that SARS-CoV-2 can cause a COVID-19-like disease, and suggest that the severity of SARS-CoV-2 infection is intermediate between that of SARS-CoV and MERS-CoV. One Sentence SummarySARS-CoV-2 infection in macaques results in COVID-19-like disease with prolonged virus excretion from nose and throat in absence of clinical signs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...