Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 18: 1330315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873651

RESUMO

Introduction: Despite being a primary impairment in individuals with cerebral palsy (CP), selective motor control (SMC) is not routinely measured. Personalized treatment approaches in CP will be unattainable without the ability to precisely characterize the types and degrees of impairments in motor control. The objective of this study is to report the development and feasibility of a new methodological approach measuring muscle activation patterns during single-joint tasks to characterize obligatory muscle co-activation patterns that may underly impaired SMC. Methods: Muscle activation patterns were recorded during sub-maximal voluntary isometric contraction (sub-MVIC) tasks at the hip, knee, and ankle with an interactive feedback game to standardize effort across participants. We calculated indices of co-activation, synergistic movement, mirror movement, and overflow (indices range 0-2, greater scores equal to greater impairment in SMC) for each isolated joint task in 15 children - 8 with typical development (TD) (mean age 4.7 ± 1.0 SD years) and 7 with CP (mean age 5.8 ± 0.7 SD years). Indices were compared with Mann-Whitney tests. The relationships between the indices and gross motor function (GMFM-66) were examined with Pearson's r. Results: Mean indices were higher in the CP vs. the TD group for each of the six tasks, with mean differences ranging from 0.05 (abduction and plantarflexion) to 0.44 (dorsiflexion). There was great inter-subject variability in the CP group such that significant group differences were detected for knee flexion mirroring (p = 0.029), dorsiflexion coactivation (p = 0.021), and dorsiflexion overflow (p = 0.014). Significant negative linear relations to gross motor function were found in all four indices for knee extension (r = -0.56 to -0.75), three of the indices for ankle dorsiflexion (r = -0.68 to -0.78) and in two of the indices for knee flexion (r = -0.66 to -0.67), and ankle plantarflexion (r = -0.53 to -0.60). Discussion: Indices of coactivation, mirror movement, synergy, and overflow during single-joint lower limb tasks may quantify the type and degree of impairment in SMC. Preliminary concurrent validity between several of the indices of SMC and gross motor function was observed. Our findings established the feasibility of a new methodological approach that quantifies muscle activation patterns using electromyography paired with biofeedback during single-joint movement.

2.
J Neurosci Methods ; 380: 109675, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872154

RESUMO

BACKGROUND: The conventional focus on discrete finger movements (i.e., index finger flexion or button-box key presses) has been an effective method to study neuromotor control using magnetoencephalography (MEG). However, this approach is challenging for young children and not possible for some people with physical disability. NEW METHOD: We have developed a novel, interactive MEG compatible reach-to-target task to investigate neuromotor function, specifically for use with young children. We used an infrared touch-screen frame to detect responses to targets presented using custom software. The game can be played using a conventional computer monitor or during MEG recordings via projector. We termed this game the Target-Touch Motor Task (TTMT). RESULTS: We demonstrate that the TTMT is a feasible motor task for use with young children including children with physical impairments. TTMT response-to-target trial counts are also comparable to conventional methods. Artifacts from the touch screen, while present > 100 Hz, did not affect MEG source analysis in the beta band (14-30 Hz). MEG responses during TTMT game play reveal robust cortical activity from expected areas of motor cortex as typically observed following movements of the upper limb. COMPARISON WITH EXISTING METHOD(S): The TTMT paradigm allows participation by individuals with a broad range of motor abilities on a reach-to-target' functional task rather than conventional tasks focusing on discrete finger movements. CONCLUSIONS: The TTMT is well suited for young children and successfully activates expected motor cortical areas. The TTMT opens-up new opportunities for the assessment of motor function across the lifespan, including for children with physical limitations.


Assuntos
Magnetoencefalografia , Córtex Motor , Criança , Pré-Escolar , Dedos/fisiologia , Humanos , Magnetoencefalografia/métodos , Córtex Motor/fisiologia , Movimento/fisiologia
3.
Hum Mov Sci ; 74: 102715, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33227568

RESUMO

Falls contribute to injuries and reduced level of physical activity in older adults. During falls, the abrupt sensation of moving downward triggers a startle-like reaction that may interfere with protective response movements necessary to maintain balance. Startle reaction could be dampened by sensory pre-stimulation delivered immediately before a startling stimulus. This study investigated the neuromodulatory effects of pre-stimulation on postural/startle responses to drop perturbations of the standing support surface in relation to age. Ten younger and 10 older adults stood quietly on an elevated computer-controlled moveable platform. At an unpredictable time, participants were dropped vertically to elicit a startle-like response. Reactive drop perturbation trials without a pre-stimulus (control) were alternated with trials with acoustic pre-stimulus tone (PSI). A two-way mixed design analysis of variance comparing condition (control vs. PSI) X group (younger vs. older) was performed to analyze changes in muscle activation patterns, ground reaction force, and joint angular displacements. Compared to younger adults, older adults showed lower neck muscle electromyography amplitude reduction rate and incidence of response. Peak muscle activation in neck, upper arm, and hamstring muscles were reduced during PSI trials compared to control trials in both groups (p < 0.05). In addition, knee and hip joint flexion prior to ground contact was reduced in PSI trials compared to control (p < 0.05). During post-landing balance recovery, increased knee and hip flexion displacement and time to peak impact force were observed in PSI trials compared to control condition (p < 0.05). PSI reduced startle-induced muscle activation at proximal body segments and likely decreased joint flexion during abrupt downward vertical displacement perturbations of the body. Older adults retained the ability to modulate startle and postural responses but their neuromodulatory capacity was reduced compared with younger adults. Further research on the potential of applying PSI as a possible therapeutic tool to reduce the risk of fall-related injury is needed.


Assuntos
Estimulação Acústica , Envelhecimento/fisiologia , Equilíbrio Postural/fisiologia , Reflexo de Sobressalto/fisiologia , Posição Ortostática , Adulto , Idoso , Braço/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Articulações/fisiologia , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/fisiologia , Músculos do Pescoço/fisiologia , Adulto Jovem
4.
J Biomech ; 91: 23-31, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31128842

RESUMO

This pilot study investigated the effect of age on the ability of motor prediction during self-triggered drop perturbations (SLF) to modulate startle-like first trial response (FTR) magnitude during externally-triggered (EXT) drop perturbations. Ten healthy older (71.4 ±â€¯1.44 years) and younger adults (26.2 ±â€¯1.63 years) stood atop a moveable platform and received blocks of twelve consecutive EXT and SLF drop perturbations. Following the last SLF trial, participants received an additional EXT trial spaced 20 min apart to assess retention (EXT RTN) of any modulation effects. Electromyographic (EMG) activity was recorded bilaterally over the sternocleidomastoid (SCM), vastus lateralis (VL), biceps femoris (BF), medial gastrocnemius (MG), and tibialis anterior (TA). Whole-body kinematics and kinetic data were recorded. Stability in the antero-posterior direction was quantified using the margin of stability (MoS). Compared with EXT trials, both groups reduced SCM peak amplitude responses during SLF and EXT RTN trials. VL/BF and TA/MG coactivation were reduced during SLF FTR compared to EXT FTR (p < 0.05) with reduced peak vertical ground reaction forces (vGRF) in both younger and older adults (p < 0.05). Older adults increased their MoS during SLF FTR compared to EXT FTR (p < 0.05). Both groups performed more eccentric work during SLF trials compared to EXT (p < 0.05). These findings indicate that abnormal startle effects with aging may interfere with balance recovery and increase risk of injury with external balance perturbations. Motor prediction may be used to acutely mitigate abnormal startle/postural responses with aging.


Assuntos
Envelhecimento/fisiologia , Equilíbrio Postural/fisiologia , Reflexo de Sobressalto/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Projetos Piloto , Adulto Jovem
5.
J Neurophysiol ; 122(1): 39-50, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017835

RESUMO

This study investigated aging changes in protective balance and startle responses to sudden drop perturbations and their effect on landing impact forces (vertical ground reaction forces, vGRF) and balance stability. Twelve healthy older (6 men; mean age = 72.5 ± 2.32 yr, mean ± SE) and 12 younger adults (7 men; mean age = 28.09 ± 1.03 yr) stood atop a moveable platform and received externally triggered drop perturbations of the support surface. Electromyographic activity was recorded bilaterally over the sternocleidomastoid (SCM), middle deltoid, biceps brachii, vastus lateralis (VL), biceps femoris (BF), medial gastrocnemius (MG), and tibialis anterior (TA). Whole body kinematics were recorded with motion analysis. Stability in the anteroposterior direction was quantified using the margin of stability (MoS). Incidence of early onset of bilateral SCM activation within 120 ms after drop onset was present during the first-trial response (FTR) for all participants. Co-contraction indexes during FTRs between VL and BF as well as TA and MG were significantly greater in the older group (VL/BF by 26%, P < 0.05; TA/MG by 37%, P < 0.05). Reduced shoulder abduction between FTR and last-trial responses, indicative of habituation, was present across both groups. Significant age-related differences in landing strategy were present between groups, because older adults had greater trunk flexion (P < 0.05) and less knee flexion (P < 0.05) that resulted in greater peak vGRFs and decreased MoS compared with younger adults. These findings suggest age-associated abnormalities of delayed, exaggerated, and poorly habituated startle/postural FTRs are linked with greater landing impact force and diminished balance stabilization. NEW & NOTEWORTHY This study investigated the role of startle as a pathophysiological mechanism contributing to balance impairment in aging. We measured neuromotor responses as younger and older adults stood on a platform that dropped unexpectedly. Group differences in landing strategies indicated age-associated abnormalities of delayed, exaggerated, and poorly habituated startle/postural responses linked with a higher magnitude of impact force and decreased balance stabilization. The findings have implications for determining mechanisms contributing to falls and related injuries.


Assuntos
Envelhecimento/fisiologia , Equilíbrio Postural , Reflexo de Sobressalto , Adaptação Fisiológica , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia
6.
Arch Phys Med Rehabil ; 98(10): 1955-1961, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28610969

RESUMO

OBJECTIVE: To determine and compare gait speed during head-forward and side-to-side head-turn walking in individuals with lower versus greater lateral balance. DESIGN: Cross-sectional study. SETTING: University research laboratory. PARTICIPANTS: Older adults (N=93; 42 men, 51 women; mean age ± SD, 73 ± 6.08y) who could walk independently. MAIN OUTCOME MEASURES: (1) Balance tolerance limit (BTL), defined as the lowest perturbation intensity where a multistep balance recovery pattern was first evoked in response to randomized lateral waist-pull perturbations of standing balance to the left and right sides, at 6 different intensities (range from level 2: 4.5-cm displacement at 180cm/s2 acceleration, to level 7: 22.5-cm displacement at 900cm/s2 acceleration); (2) gait speed, determined using an instrumented gait mat; (3) balance, evaluated with the Activities-specific Balance Confidence Scale; and (4) mobility, determined with the Timed Up and Go (TUG). RESULTS: Individuals with low versus high BTL had a slower self-selected head-forward gait speed and head-turn gait speed (P=.002 and P<.001, respectively); the magnitude of difference was greater in head-turn gait speed than head-forward gait speed (Cohen's d=1.0 vs 0.6). Head-turn gait speed best predicted BTL. BTL was moderately and positively related (P=.003) to the ABC Scale and negatively related (P=.017) to TUG. CONCLUSIONS: Head-turn gait speed is affected to a greater extent than head-forward gait speed in older individuals with poorer lateral balance and at greater risk of falls. Moreover, head-turn gait speed can be used to assess the interactions of limitations in lateral balance function and gait speed in relation to fall risk in older adults.


Assuntos
Equilíbrio Postural/fisiologia , Velocidade de Caminhada/fisiologia , Acidentes por Quedas , Idoso , Estudos Transversais , Feminino , Marcha/fisiologia , Avaliação Geriátrica , Cabeça , Humanos , Masculino
7.
Neurosci Lett ; 586: 8-12, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25455673

RESUMO

The aim of the present study was to investigate whether or not startle reactions contribute to the whole body postural responses following sudden freefall in standing humans. Nine healthy participants stood atop a moveable platform and received externally-triggered (EXT) and selftriggered (SLF) drop perturbations of the support surface. Electromyographic (EMG) activity was recorded bilaterally over the sternocleidomastoid (SCM), deltoid (DLT), biceps brachii (BIC), medial gastrocnemius (GAS), and tibialis anterior (TA) muscles. Whole-body kinematics were also recorded with motion analysis. Rapid phasic activation of SCM during the first trial response (FTR) was seen for all participants for EXT and for 56% of subjects for SLF. Reductions in EMG amplitude between the EXT FTR and later trial responses for SCM, DLT, and BIC and reduced arm movement acceleration indicative of habituation occurred and exceeded adaptive reductions for SLF. These findings suggested that a startle reflex contributes to the exaggerated postural FTR observed during externally-triggered whole-body free falls.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Reflexo de Sobressalto , Braço/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...