Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 26(10): 2453-2456, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32946735

RESUMO

We evaluated the prevalence of Rift Valley fever virus IgG and IgM in human serum samples (n = 1,276) collected in 2013-2014 in northern Botswana. Our findings provide evidence of active circulation of this virus in humans in the absence of clinical disease in this region.


Assuntos
Aedes , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Anticorpos Antivirais , Botsuana/epidemiologia , Humanos , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética
2.
Glob Chang Biol ; 26(8): 4284-4301, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558115

RESUMO

Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease-induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955-2018) across extant marine mammals (n = 129) in relation to key life-history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%-21%), with 72% (n = 36; 95% CI 56%-84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%-41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus-induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2  = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2  = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e-04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.


Assuntos
Caniformia , Mudança Climática , Animais , Surtos de Doenças , Ecossistema , El Niño Oscilação Sul , Mamíferos
3.
Front Microbiol ; 9: 1894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237787

RESUMO

Little is known about the role of surface water in the propagation of antibiotic resistance (AR), or the relationship between AR and water quality declines. While healthcare and agricultural sectors are considered the main contributors to AR dissemination, few studies have been conducted in their absence. Using linear models and Bayesian kriging, we evaluate AR among Escherichia coli water isolates collected bimonthly from the Chobe River in Northern Botswana (n = 1997, n = 414 water samples; July 2011-May 2012) in relation to water quality dynamics (E. coli, fecal coliform, and total suspended solids), land use, season, and AR in wildlife and humans within this system. No commercial agricultural or large medical facilities exist within this region. Here, we identify widespread AR in surface water, with land use and season significant predicators of AR levels. Mean AR was significantly higher in the wet season than the dry season (p = 0.003), and highest in the urban landscape (2.15, SD = 0.098) than the protected landscape (1.39, SD = 0.051). In-water E. coli concentrations were significantly positively associated with mean AR in the wet season (p < 0.001) but not in the dry season (p = 0.110), with TSS negatively associated with mean AR across seasons (p = 0.016 and p = 0.029), identifying temporal and spatial relationships between water quality variables and AR. Importantly, when human, water, and wildlife isolates were examined, similar AR profiles were identified (p < 0.001). Our results suggest that direct human inputs are sufficient for extensive dispersal of AR into the environment, with landscape features, season, and water quality variables influencing AR dynamics. Focused and expensive efforts to minimize pollution from agricultural sources, while important, may only provide incremental benefits to the management of AR across complex landscapes. Controlling direct human AR inputs into the environment remains a critical and pressing challenge.

4.
Vet Pathol ; 55(2): 303-309, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29258402

RESUMO

Wild banded mongooses ( Mungos mungo) in northeastern Botswana and northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex (MTC) pathogen, Mycobacterium mungi. We evaluated gross and histologic lesions in 62 infected mongooses (1999-2017). Many tissues contained multifocal irregular, lymphohistiocytic to granulomatous infiltrates and/or multifocal or coalescing noncaseating to caseating granulomas with variable numbers of intralesional acid-fast bacilli. Over one-third of nasal turbinates examined had submucosal lymphohistiocytic to granulomatous infiltrates, erosion and ulceration of the nasal mucosa, bony remodeling, and nasal distortion. Similar inflammatory cell infiltrates expanded the dermis of the nasal planum with frequent ulceration. However, even in cases with intact epidermis, acid-fast bacilli were present in variable numbers among dermal infiltrates and on the epidermal surface among desquamated cells and debris, most commonly in small crevices or folds. In general, tissue involvement varied among cases but was highest in lymph nodes (50/54, 93%), liver (39/53, 74%), spleen (37/51, 73%), and anal glands/sacs (6/8, 75%). Pulmonary lesions were present in 67% of sampled mongooses (35/52) but only in advanced disseminated disease. The pathological presentation of M. mungi in the banded mongoose is consistent with pathogen shedding occurring through scent-marking behaviors (urine and anal gland secretions) with new infections arising from contact with these contaminated olfactory secretions and percutaneous movement of the pathogen through breaks in the skin, nasal planum, and/or skin of the snout. Given the character and distribution of lesions and the presence of intracellular acid-fast bacilli, we hypothesize that pathogen spread occurs within the body through a hematogenous and/or lymphatic route. Features of prototypical granulomas such as multinucleated giant cells and peripheral fibrosis were rarely present in affected mongooses. Acid-fast bacilli were consistently found intracellularly, even in regions of necrosis. The mongoose genome has a unique deletion (RD1mon) that includes part of the encoding region for PPE68 (Rv3873), a gene co-operonic with PE35. These proteins can influence the host's cellular immune response to mycobacterial infections, and it remains uncertain how this deletion might contribute to observed patterns of pathology. M. mungi infection in banded mongooses is characterized by both a unique transmission and exposure route, as well as accompanying pathological features, providing an opportunity to increase our understanding of MTC pathogenesis across host-pathogen systems.


Assuntos
Herpestidae/microbiologia , Infecções por Mycobacterium/veterinária , Mycobacterium , Sacos Anais/patologia , Animais , Feminino , Fígado/patologia , Pulmão/patologia , Linfonodos/patologia , Masculino , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Pele/patologia , Baço/patologia
5.
Nat Ecol Evol ; 1(4): 90, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28812651
7.
mBio ; 7(3)2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165798

RESUMO

UNLABELLED: An emerging Mycobacterium tuberculosis complex (MTC) pathogen, M. mungi, infects wild banded mongooses (Mungos mungo) in Northern Botswana, causing significant mortality. This MTC pathogen did not appear to be transmitted through a primary aerosol or oral route. We utilized histopathology, spoligotyping, mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), quantitative PCR (qPCR), and molecular markers (regions of difference [RDs] from various MTC members, including region of difference 1 [RD1] from M. bovis BCG [RD1(BCG)], M. microti [RD1(mic)], and M. pinnipedii [RD1(seal)], genes Rv1510 [RD4], Rv1970 [RD7], Rv3877/8 [RD1], and Rv3120 [RD12], insertion element IS1561, the 16S RNA gene, and gene Rv0577 [cfp32]), including the newly characterized mongoose-specific deletion in RD1 (RD1(mon)), in order to demonstrate the presence of M. mungi DNA in infected mongooses and investigate pathogen invasion and exposure mechanisms. M. mungi DNA was identified in 29% of nasal planum samples (n = 52), 56% of nasal rinses and swabs (n = 9), 53% of oral swabs (n = 19), 22% of urine samples (n = 23), 33% of anal gland tissue (n = 18), and 39% of anal gland secretions (n = 44). The occurrence of extremely low cycle threshold values obtained with qPCR in anal gland and nasal planum samples indicates that high levels of M. mungi can be found in these tissue types. Histological data were consistent with these results, suggesting that pathogen invasion occurs through breaks in the nasal planum and/or skin of the mongoose host, which are in frequent contact with anal gland secretions and urine during olfactory communication behavior. Lesions in the lung, when present, occurred only with disseminated disease. No environmental sources of M. mungi DNA could be found. We report primary environmental transmission of an MTC pathogen that occurs in association with social communication behavior. IMPORTANCE: Organisms causing infectious disease evolve modes of transmission that exploit environmental and host conditions favoring pathogen spread and persistence. We report a novel mode of environmental infectious disease transmission that occurs in association with olfactory secretions (e.g., urine and anal gland secretions), allowing pathogen exposure to occur within and between social groups through intricate social communication behaviors of the banded mongoose host. The presence of M. mungi in these environmentally deposited secretions would effectively circumvent natural social barriers (e.g., territoriality), facilitating between-group pathogen transmission in the absence of direct physical contact, a rare occurrence in this highly territorial species. This work identifies an important potential mechanism of pathogen transmission of epidemiological significance in social species. We also provide evidence of a novel mechanism of pathogen transmission for the MTC complex, where pathogen movement in the environment and host exposure dynamics are driven by social behavior.


Assuntos
Comunicação Animal , Proteínas de Bactérias/genética , Herpestidae/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Tuberculose/veterinária , Canal Anal/microbiologia , Animais , Botsuana/epidemiologia , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Herpestidae/fisiologia , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/patogenicidade , Nariz/anatomia & histologia , Nariz/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Tuberculose/epidemiologia , Tuberculose/microbiologia , Tuberculose/transmissão
8.
PLoS Negl Trop Dis ; 9(6): e0003652, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042592

RESUMO

An Ebola outbreak of unprecedented scope emerged in West Africa in December 2013 and presently continues unabated in the countries of Guinea, Sierra Leone, and Liberia. Ebola is not new to Africa, and outbreaks have been confirmed as far back as 1976. The current West African Ebola outbreak is the largest ever recorded and differs dramatically from prior outbreaks in its duration, number of people affected, and geographic extent. The emergence of this deadly disease in West Africa invites many questions, foremost among these: why now, and why in West Africa? Here, we review the sociological, ecological, and environmental drivers that might have influenced the emergence of Ebola in this region of Africa and its spread throughout the region. Containment of the West African Ebola outbreak is the most pressing, immediate need. A comprehensive assessment of the drivers of Ebola emergence and sustained human-to-human transmission is also needed in order to prepare other countries for importation or emergence of this disease. Such assessment includes identification of country-level protocols and interagency policies for outbreak detection and rapid response, increased understanding of cultural and traditional risk factors within and between nations, delivery of culturally embedded public health education, and regional coordination and collaboration, particularly with governments and health ministries throughout Africa. Public health education is also urgently needed in countries outside of Africa in order to ensure that risk is properly understood and public concerns do not escalate unnecessarily. To prevent future outbreaks, coordinated, multiscale, early warning systems should be developed that make full use of these integrated assessments, partner with local communities in high-risk areas, and provide clearly defined response recommendations specific to the needs of each community.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças/prevenção & controle , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , África Ocidental/epidemiologia , Humanos , Fatores de Risco
10.
J Hered ; 103(4): 467-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22563128

RESUMO

The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB ß1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.


Assuntos
Genes MHC da Classe II , Variação Genética , Ornitorrinco/genética , Animais , Austrália , Mudança Climática , Repetições de Microssatélites
11.
Immunogenetics ; 61(8): 565-79, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19597809

RESUMO

Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.


Assuntos
Lectinas Tipo C/genética , Ornitorrinco/genética , Ornitorrinco/imunologia , Receptores de Células Matadoras Naturais/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Duplicação Gênica , Genoma , Humanos , Fenômenos Imunogenéticos , Lectinas Tipo C/química , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Filogenia , Ornitorrinco/classificação , Receptores de Células Matadoras Naturais/química , Seleção Genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
12.
Genome Res ; 17(7): 982-91, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17495011

RESUMO

The availability of the first marsupial genome sequence has allowed us to characterize the immunome of the gray short-tailed opossum (Monodelphis domestica). Here we report the identification of key immune genes, including the highly divergent chemokines, defensins, cathelicidins, and Natural Killer cell receptors. It appears that the increase in complexity of the mammalian immune system occurred prior to the divergence of the marsupial and eutherian lineages approximately 180 million years ago. Genomes of ancestral mammals most likely contained all of the key mammalian immune gene families, with evolution on different continents, in the presence of different pathogens leading to lineage specific expansions and contractions, resulting in some minor differences in gene number and composition between different mammalian lineages. Gene expansion and extensive heterogeneity in opossum antimicrobial peptide genes may have evolved as a consequence of the newborn young needing to survive without an adaptive immune system in a pathogen laden environment. Given the similarities in the genomic architecture of the marsupial and eutherian immune systems, we propose that marsupials are ideal model organisms for the study of developmental immunology.


Assuntos
Evolução Molecular , Genoma , Imunidade/genética , Mamíferos/genética , Mamíferos/imunologia , Monodelphis/genética , Monodelphis/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Quimiocinas/genética , Defensinas/genética , Células Matadoras Naturais/imunologia , Transcrição Gênica , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...