Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 9(1): 57, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774097

RESUMO

BACKGROUND: Human disturbance alters animal movement globally and infrastructure, such as roads, can act as physical barriers that impact behaviour across multiple spatial scales. In ungulates, roads can particularly hamper key ecological processes such as dispersal and migration, which ensure functional connectivity among populations, and may be particularly important for population performance in highly human-dominated landscapes. The impact of roads on some aspects of ungulate behaviour has already been studied. However, potential differences in response to roads during migration, dispersal and home range movements have never been evaluated. Addressing these issues is particularly important to assess the resistance of European landscapes to the range of wildlife movement processes, and to evaluate how animals adjust to anthropogenic constraints. METHODS: We analysed 95 GPS trajectories from 6 populations of European roe deer (Capreolus capreolus) across the Alps and central Europe. We investigated how roe deer movements were affected by landscape characteristics, including roads, and we evaluated potential differences in road avoidance among resident, migratory and dispersing animals (hereafter, movement modes). First, using Net Squared Displacement and a spatio-temporal clustering algorithm, we classified individuals as residents, migrants or dispersers. We then identified the start and end dates of the migration and dispersal trajectories, and retained only the GPS locations that fell between those dates (i.e., during transience). Finally, we used the resulting trajectories to perform an integrated step selection analysis. RESULTS: We found that roe deer moved through more forested areas during the day and visited less forested areas at night. They also minimised elevation gains and losses along their movement trajectories. Road crossings were strongly avoided at all times of day, but when they occurred, they were more likely to occur during longer steps and in more forested areas. Road avoidance did not vary among movement modes and, during dispersal and migration, it remained high and consistent with that expressed during home range movements. CONCLUSIONS: Roads can represent a major constraint to movement across modes and populations, potentially limiting functional connectivity at multiple ecological scales. In particular, they can affect migrating individuals that track seasonal resources, and dispersing animals searching for novel ranges.

2.
Oecologia ; 187(1): 47-60, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610976

RESUMO

Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.


Assuntos
Cervos , Herbivoria , Animais , Europa (Continente) , Comportamento de Retorno ao Território Vital , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...