Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Kidney Int Rep ; 8(10): 2043-2055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37850012

RESUMO

Introduction: Diabetes is the most common cause of chronic kidney disease (CKD). Urinary albumin excretion rate (AER) and estimated glomerular filtration rate (eGFR) are commonly used to monitor the onset and progression of diabetic kidney disease (DKD). We studied if the preceding rate of kidney function decline, that is, the eGFR slope, is independently associated with incident clinical cardiorenal events. Methods: This study included longitudinal data for 2498 Finnish individuals with type 1 diabetes (T1D). The eGFR slope was calculated from 5 years preceding the study visit. Data on kidney failure, coronary heart disease (CHD), stroke, 3-point major adverse cardiovascular events (MACE), heart failure, and death were obtained from national registries. The associations between the eGFR slope and incident events were assessed with multivariable competing risk models during the average follow-up of 9.2 years. Results: The eGFR slopes were associated (P ≤ 0.001) with all outcomes when adjusted for age, sex, and HbA1c. However, eGFR slope remained associated only with the composite outcome of kidney failure or death when the albuminuria group and eGFR at the study visit were included in the model (P = 0.041). In addition, eGFR slope was independently associated with kidney failure in individuals without CKD (eGFR > 60 ml/min per 1.73 m2; P = 0.044), and with heart failure in those with CKD (P = 0.033). However, eGFR slope did not markedly improve the model C-index. Conclusion: The eGFR slope was independently associated with kidney failure in those without CKD, and with heart failure in those with CKD. However, it is unlikely to have major relevance for clinical practice when the current eGFR and albuminuria status are known.

2.
Lancet Diabetes Endocrinol ; 11(7): 465-473, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290465

RESUMO

BACKGROUND: Contrary to the presumption that type 1 diabetes leads to an absolute insulin deficiency, many individuals with type 1 diabetes have circulating C-peptide years after the diagnosis. We studied factors affecting random serum C-peptide concentration in individuals with type 1 diabetes and the association with diabetic complications. METHODS: Our longitudinal analysis included individuals newly diagnosed with type 1 diabetes from Helsinki University Hospital (Helsinki, Finland) with repeated random serum C-peptide and concomitant glucose measurements from within 3 months of diagnosis and at least once later. The long-term cross-sectional analysis included data from participants from 57 centres in Finland who had type 1 diabetes diagnosed after 5 years of age, initiation of insulin treatment within 1 year from diagnosis, and a C-peptide concentration of less than 1·0 nmol/L (FinnDiane study) and patients with type 1 diabetes from the DIREVA study. We tested the association of random serum C-peptide concentrations and polygenic risk scores with one-way ANOVA, and association of random serum C-peptide concentrations, polygenic risk scores, and clinical factors with logistic regression. FINDINGS: The longitudinal analysis included 847 participants younger than 16 years and 110 aged 16 years or older. In the longitudinal analysis, age at diagnosis strongly correlated with the decline in C-peptide secretion. The cross-sectional analysis included 3984 participants from FinnDiane and 645 from DIREVA. In the cross-sectional analysis, at a median duration of 21·6 years (IQR 12·5-31·2), 776 (19·4%) of 3984 FinnDiane participants had residual random serum C-peptide secretion (>0·02 nmol/L), which was associated with lower type 1 diabetes polygenic risk compared with participants without random serum C-peptide (p<0·0001). Random serum C-peptide was inversely associated with hypertension, HbA1c, and cholesterol, but also independently with microvascular complications (adjusted OR 0·61 [95% CI 0·38-0·96], p=0·033, for nephropathy; 0·55 [0·34-0·89], p=0·014, for retinopathy). INTERPRETATION: Although children with multiple autoantibodies and HLA risk genotypes progressed to absolute insulin deficiency rapidly, many adolescents and adults had residual random serum C-peptide decades after the diagnosis. Polygenic risk of type 1 and type 2 diabetes affected residual random serum C-peptide. Even low residual random serum C-peptide concentrations seemed to be associated with a beneficial complications profile. FUNDING: Folkhälsan Research Foundation; Academy of Finland; University of Helsinki and Helsinki University Hospital; Medical Society of Finland; the Sigrid Juselius Foundation; the "Liv and Hälsa" Society; Novo Nordisk Foundation; and State Research Funding via the Helsinki University Hospital, the Vasa Hospital District, Turku University Hospital, Vasa Central Hospital, Jakobstadsnejdens Heart Foundation, and the Medical Foundation of Vaasa.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Adolescente , Criança , Humanos , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Secreção de Insulina , Finlândia/epidemiologia , Peptídeo C , Insulina/uso terapêutico , Insulina/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1163001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324271

RESUMO

Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Estudo de Associação Genômica Ampla , Complicações do Diabetes/genética , Fatores de Risco , Epigênese Genética , Diabetes Mellitus/genética
4.
Genes (Basel) ; 14(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239390

RESUMO

Diabetic kidney disease (DKD) represents a major global health problem. Accelerated ageing is a key feature of DKD and, therefore, characteristics of accelerated ageing may provide useful biomarkers or therapeutic targets. Harnessing multi-omics, features affecting telomere biology and any associated methylome dysregulation in DKD were explored. Genotype data for nuclear genome polymorphisms in telomere-related genes were extracted from genome-wide case-control association data (n = 823 DKD/903 controls; n = 247 end-stage kidney disease (ESKD)/1479 controls). Telomere length was established using quantitative polymerase chain reaction. Quantitative methylation values for 1091 CpG sites in telomere-related genes were extracted from epigenome-wide case-control association data (n = 150 DKD/100 controls). Telomere length was significantly shorter in older age groups (p = 7.6 × 10-6). Telomere length was also significantly reduced (p = 6.6 × 10-5) in DKD versus control individuals, with significance remaining after covariate adjustment (p = 0.028). DKD and ESKD were nominally associated with telomere-related genetic variation, with Mendelian randomisation highlighting no significant association between genetically predicted telomere length and kidney disease. A total of 496 CpG sites in 212 genes reached epigenome-wide significance (p ≤ 10-8) for DKD association, and 412 CpG sites in 193 genes for ESKD. Functional prediction revealed differentially methylated genes were enriched for Wnt signalling involvement. Harnessing previously published RNA-sequencing datasets, potential targets where epigenetic dysregulation may result in altered gene expression were revealed, useful as potential diagnostic and therapeutic targets for intervention.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Falência Renal Crônica , Humanos , Idoso , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Falência Renal Crônica/genética , Metilação de DNA/genética , Telômero/genética , Telômero/metabolismo
5.
Eur J Neurol ; 30(4): 1080-1088, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692225

RESUMO

BACKGROUND AND PURPOSE: Tibial muscular dystrophy (TMD) is a dominant late onset distal titinopathy. It was first described in Finnish patients 3 decades ago. TMD patients with several other TTN mutations occur in many European populations. In this retrospective study, we were able to obtain longitudinal follow-up data of the disease progression over 15 years in 137 TMD patients. METHODS: We retrieved clinical data retrospectively from three examinations spanning a period of 15 years. The data were analyzed in R. Frequencies, percentages, and median values were used to describe data. Probability values were determined with the chi-squared test. RESULTS: In the cohort, the first symptoms were walking difficulties (97.8%) and weakness in distal lower limbs (98.5%). The progression of the weakness in distal lower limbs was moderate, and in the proximal lower limbs and proximal upper limbs it was mild. The distal upper limbs were not affected. Magnetic resonance imaging results indicated fatty degeneration preferentially in lower leg anterior muscles, gluteus minimus, and hamstring muscles. Serum creatine kinase values in the cohort were mostly normal (40.7%) or mildly elevated (53.7%). The data suggest that 50% of patients need walking aids by the age of 88 years. CONCLUSIONS: Despite individual variability of severity, the overall disability due to walking difficulties and upper limb weakness remained moderate even at very advanced ages, and cardiomyopathy did not develop due to the titin defect alone. The acquired results promote the correct identification of TMD, and the obtained trajectories of disease evolution can be used as natural history data for any therapeutic intervention.


Assuntos
Miopatias Distais , Humanos , Idoso de 80 Anos ou mais , Miopatias Distais/genética , Estudos Retrospectivos , Músculo Esquelético/patologia , Perna (Membro) , Prognóstico
6.
Nat Commun ; 13(1): 7891, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550108

RESUMO

Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Humanos , Metilação de DNA/genética , Epigenoma , Nefropatias Diabéticas/genética , Epigênese Genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Biomarcadores , DNA , Estudo de Associação Genômica Ampla , Ilhas de CpG
7.
Diabetes ; 71(12): 2728-2738, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409784

RESUMO

The exon copy number variant in the haptoglobin gene is associated with cardiovascular and kidney disease. For stroke, previous research is inconclusive. We aimed to study the relationship between the haptoglobin Hp1/2 genotype and stroke in individuals with type 1 diabetes from the Finnish Diabetic Nephropathy Study. We included two partially overlapping cohorts: one with haptoglobin genotypes determined using genotyping for 179 individuals with stroke and 517 matched control subjects, and the other using haptoglobin genotype imputation for a larger cohort of 500 individuals with stroke and 3,806 individuals without stroke. We observed no difference in the Hp1-1, Hp2-1, and Hp2-2 genotype frequencies between individuals with or without stroke, neither in the genotyping nor the imputation cohorts. Haptoglobin genotypes were also not associated with the ischemic or hemorrhagic stroke subtypes. In our imputed haptoglobin cohort, 61% of individuals with stroke died during follow-up. However, the risk of death was not related to the haptoglobin genotype. Diabetic kidney disease and cardiovascular events were common in the cohort, but the haptoglobin genotypes were not associated with stroke when stratified by these complications. To conclude, the Hp1/2 genotypes did not affect the risk of stroke or survival after stroke in our cohort with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Acidente Vascular Cerebral , Humanos , Haptoglobinas/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Genótipo , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Proteínas Cromossômicas não Histona/genética
8.
Genome Med ; 14(1): 132, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419110

RESUMO

BACKGROUND: Dyslipidemia is a major risk factor for cardiovascular disease, and diabetes impacts the lipid metabolism through multiple pathways. In addition to the standard lipid measurements, apolipoprotein concentrations provide added awareness of the burden of circulating lipoproteins. While common genetic variants modestly affect the serum lipid concentrations, rare genetic mutations can cause monogenic forms of hypercholesterolemia and other genetic disorders of lipid metabolism. We aimed to identify low-frequency protein-altering variants (PAVs) affecting lipoprotein and lipid traits. METHODS: We analyzed whole-exome (WES) and whole-genome sequencing (WGS) data of 481 and 474 individuals with type 1 diabetes, respectively. The phenotypic data consisted of 79 serum lipid and apolipoprotein phenotypes obtained with clinical laboratory measurements and nuclear magnetic resonance spectroscopy. RESULTS: The single-variant analysis identified an association between the LIPC p.Thr405Met (rs113298164) and serum apolipoprotein A1 concentrations (p=7.8×10-8). The burden of PAVs was significantly associated with lipid phenotypes in LIPC, RBM47, TRMT5, GTF3C5, MARCHF10, and RYR3 (p<2.9×10-6). The RBM47 gene is required for apolipoprotein B post-translational modifications, and in our data, the association between RBM47 and apolipoprotein C-III concentrations was due to a rare 21 base pair p.Ala496-Ala502 deletion; in replication, the burden of rare deleterious variants in RBM47 was associated with lower triglyceride concentrations in WES of >170,000 individuals from multiple ancestries (p=0.0013). Two PAVs in GTF3C5 were highly enriched in the Finnish population and associated with cardiovascular phenotypes in the general population. In the previously known APOB gene, we identified novel associations at two protein-truncating variants resulting in lower serum non-HDL cholesterol (p=4.8×10-4), apolipoprotein B (p=5.6×10-4), and LDL cholesterol (p=9.5×10-4) concentrations. CONCLUSIONS: We identified lipid and apolipoprotein-associated variants in the previously known LIPC and APOB genes, as well as PAVs in GTF3C5 associated with LDLC, and in RBM47 associated with apolipoprotein C-III concentrations, implicated as an independent CVD risk factor. Identification of rare loss-of-function variants has previously revealed genes that can be targeted to prevent CVD, such as the LDL cholesterol-lowering loss-of-function variants in the PCSK9 gene. Thus, this study suggests novel putative therapeutic targets for the prevention of CVD.


Assuntos
Doenças Cardiovasculares , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Sequenciamento do Exoma , LDL-Colesterol/genética , Apolipoproteína C-III/genética , Apolipoproteínas/genética , Apolipoproteínas B/genética , Proteínas de Ligação a RNA/genética
9.
Sci Rep ; 12(1): 14137, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986039

RESUMO

We recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Timócitos , Criança , Cromatina/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Predisposição Genética para Doença , Humanos , Lactente , Locos de Características Quantitativas , Timócitos/metabolismo
10.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35763030

RESUMO

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/metabolismo , Quinases Semelhantes a Duplacortina , Fibrose , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética
11.
Diabetes Care ; 45(6): 1416-1427, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35377940

RESUMO

OBJECTIVE: Understanding mechanisms underlying rapid estimated glomerular filtration rate (eGFR) decline is important to predict and treat kidney disease in type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: We performed a case-control study nested within four T1D cohorts to identify urinary proteins associated with rapid eGFR decline. Case and control subjects were categorized based on eGFR decline ≥3 and <1 mL/min/1.73 m2/year, respectively. We used targeted liquid chromatography-tandem mass spectrometry to measure 38 peptides from 20 proteins implicated in diabetic kidney disease. Significant proteins were investigated in complementary human cohorts and in mouse proximal tubular epithelial cell cultures. RESULTS: The cohort study included 1,270 participants followed a median 8 years. In the discovery set, only cathepsin D peptide and protein were significant on full adjustment for clinical and laboratory variables. In the validation set, associations of cathepsin D with eGFR decline were replicated in minimally adjusted models but lost significance with adjustment for albuminuria. In a meta-analysis with combination of discovery and validation sets, the odds ratio for the association of cathepsin D with rapid eGFR decline was 1.29 per SD (95% CI 1.07-1.55). In complementary human cohorts, urine cathepsin D was associated with tubulointerstitial injury and tubulointerstitial cathepsin D expression was associated with increased cortical interstitial fractional volume. In mouse proximal tubular epithelial cell cultures, advanced glycation end product-BSA increased cathepsin D activity and inflammatory and tubular injury markers, which were further increased with cathepsin D siRNA. CONCLUSIONS: Urine cathepsin D is associated with rapid eGFR decline in T1D and reflects kidney tubulointerstitial injury.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Albuminúria , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Catepsina D , Estudos de Coortes , Progressão da Doença , Taxa de Filtração Glomerular , Humanos , Camundongos , Proteômica/métodos
12.
Sci Rep ; 12(1): 4571, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301383

RESUMO

Prospective biomarker studies can be used to identify biomarkers predictive of disease onset. However, if serum biomarkers are measured years after their collection, the storage conditions might affect analyte concentrations. Few data exists concerning which metabolites and proteins are affected by storage at - 20 °C vs - 80 °C. Our objectives were to document analytes affected by storage of serum samples at - 20 °C vs - 80 °C, and to identify those indicative of the storage temperature. We utilized liquid chromatography tandem mass spectrometry and Luminex to quantify 300 analytes from serum samples of 16 Finnish individuals with type 1 diabetes, with split-aliquot samples stored at - 80 °C and - 20 °C for a median of 4.2 years. Results were validated in 315 Finnish and 916 Scottish individuals with type 1 diabetes, stored at - 20 °C and at - 80 °C, respectively. After quality control, we analysed 193 metabolites and proteins of which 120 were apparently unaffected and 15 clearly susceptible to storage at - 20 °C vs - 80 °C. Further, we identified serum glutamate/glutamine ratio greater than 0.20 as a biomarker of storage at - 20 °C vs - 80 °C. The results provide a catalogue of analytes unaffected and affected by storage at - 20 °C vs - 80 °C and biomarkers indicative of sub-optimal storage.


Assuntos
Diabetes Mellitus Tipo 1 , Proteômica , Biomarcadores , Humanos , Estudos Prospectivos , Temperatura
13.
Diabetes Care ; 45(3): 734-741, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019974

RESUMO

OBJECTIVE: Individuals with type 1 diabetes are at a high lifetime risk of coronary artery disease (CAD), calling for early interventions. This study explores the use of a genetic risk score (GRS) for CAD risk prediction, compares it to established clinical markers, and investigates its performance according to the age and pharmacological treatment. RESEARCH DESIGN AND METHODS: This study in 3,295 individuals with type 1 diabetes from the Finnish Diabetic Nephropathy Study (467 incident CAD, 14.8 years follow-up) used three risk scores: a GRS, a validated clinical score, and their combined score. Hazard ratios (HR) were calculated with Cox regression, and model performances were compared with the Harrell C-index (C-index). RESULTS: A HR of 6.7 for CAD was observed between the highest and the lowest 5th percentile of the GRS (P = 1.8 × 10-6). The performance of GRS (C-index = 0.562) was similar to HbA1c (C-index = 0.563, P = 0.96 for difference), HDL (C-index = 0.571, P = 0.6), and total cholesterol (C-index = 0.594, P = 0.1). The GRS was not correlated with the clinical score (r = -0.013, P = 0.5). The combined score outperformed the clinical score (C-index = 0.813 vs. C-index = 0.820, P = 0.003). The GRS performed better in individuals below the median age (38.6 years) compared with those above (C-index = 0.637 vs. C-index = 0.546). CONCLUSIONS: A GRS identified individuals at high risk of CAD and worked better in younger individuals. GRS was also an independent risk factor for CAD, with a predictive power comparable to that of HbA1c and HDL and total cholesterol, and when incorporated into a clinical model, modestly improved the predictions. The GRS promises early risk stratification in clinical practice by enhancing the prediction of CAD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 1 , Adulto , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Medição de Risco , Fatores de Risco
15.
Diabetologia ; 65(1): 140-149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34686904

RESUMO

AIMS/HYPOTHESIS: This prospective, observational study examines associations between 51 urinary metabolites and risk of progression of diabetic nephropathy in individuals with type 1 diabetes by employing an automated NMR metabolomics technique suitable for large-scale urine sample collections. METHODS: We collected 24-h urine samples for 2670 individuals with type 1 diabetes from the Finnish Diabetic Nephropathy study and measured metabolite concentrations by NMR. Individuals were followed up for 9.0 ± 5.0 years until their first sign of progression of diabetic nephropathy, end-stage kidney disease or study end. Cox regressions were performed on the entire study population (overall progression), on 1999 individuals with normoalbuminuria and 347 individuals with macroalbuminuria at baseline. RESULTS: Seven urinary metabolites were associated with overall progression after adjustment for baseline albuminuria and chronic kidney disease stage (p < 8 × 10-4): leucine (HR 1.47 [95% CI 1.30, 1.66] per 1-SD creatinine-scaled metabolite concentration), valine (1.38 [1.22, 1.56]), isoleucine (1.33 [1.18, 1.50]), pseudouridine (1.25 [1.11, 1.42]), threonine (1.27 [1.11, 1.46]) and citrate (0.84 [0.75, 0.93]). 2-Hydroxyisobutyrate was associated with overall progression (1.30 [1.16, 1.45]) and also progression from normoalbuminuria (1.56 [1.25, 1.95]). Six amino acids and pyroglutamate were associated with progression from macroalbuminuria. CONCLUSIONS/INTERPRETATION: Branched-chain amino acids and other urinary metabolites were associated with the progression of diabetic nephropathy on top of baseline albuminuria and chronic kidney disease. We found differences in associations for overall progression and progression from normo- and macroalbuminuria. These novel discoveries illustrate the utility of analysing urinary metabolites in entire population cohorts.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Albuminúria/metabolismo , Creatinina , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Humanos , Estudos Prospectivos
16.
J Am Heart Assoc ; 10(21): e022482, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668383

RESUMO

Background Translocation of lipopolysaccharide from gram-negative bacteria into the systemic circulation results in endotoxemia. In addition to acute infections, endotoxemia is detected in cardiometabolic disorders, such as cardiovascular diseases and obesity. Methods and Results We performed a genome-wide association study of serum lipopolysaccharide activity in 11 296 individuals from 6 different Finnish study cohorts. Endotoxemia was measured by limulus amebocyte lysate assay in the whole population and by 2 other techniques (Endolisa and high-performance liquid chromatography/tandem mass spectrometry) in subpopulations. The associations of the composed genetic risk score of endotoxemia and thrombosis-related clinical end points for 195 170 participants were analyzed in FinnGen. Lipopolysaccharide activity had a genome-wide significant association with 741 single-nucleotide polymorphisms in 5 independent loci, which were mainly located at genes affecting the contact activation of the coagulation cascade and lipoprotein metabolism and explained 1.5% to 9.2% of the variability in lipopolysaccharide activity levels. The closest genes included KNG1, KLKB1, F12, SLC34A1, YPEL4, CLP1, ZDHHC5, SERPING1, CBX5, and LIPC. The genetic risk score of endotoxemia was associated with deep vein thrombosis, pulmonary embolism, pulmonary heart disease, and venous thromboembolism. Conclusions The biological activity of lipopolysaccharide in the circulation (ie, endotoxemia) has a small but highly significant genetic component. Endotoxemia is associated with genetic variation in the contact activation pathway, vasoactivity, and lipoprotein metabolism, which play important roles in host defense, lipopolysaccharide neutralization, and thrombosis, and thereby thromboembolism and stroke.


Assuntos
Endotoxemia , Acidente Vascular Cerebral , Tromboembolia Venosa , Endotoxemia/genética , Perfil Genético , Estudo de Associação Genômica Ampla , Humanos , Lipopolissacarídeos , Lipoproteínas , Trombose
17.
Circ Genom Precis Med ; 14(5): e002862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34601942

RESUMO

BACKGROUND: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. METHODS: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. RESULTS: We identified 5 genome-wide significant (Passociation ≤5×10-8) associations with PAD in 449 548 (Ncases=12 086) individuals of European ancestry near LPA (lipoprotein [a]), CDKN2BAS1 (CDKN2B antisense RNA 1), SH2B3 (SH2B adaptor protein 3) - PTPN11 (protein tyrosine phosphatase non-receptor type 11), HDAC9 (histone deacetylase 9), and CHRNA3 (cholinergic receptor nicotinic alpha 3 subunit) loci (which overlapped previously reported associations). Meta-analysis with variants previously associated with PAD showed that 18 of 19 published variants remained genome-wide significant. In individuals with diabetes, rs116405693 at the CCSER1 (coiled-coil serine rich protein 1) locus was associated with PAD (odds ratio [95% CI], 1.51 [1.32-1.74], Pdiabetes=2.5×10-9, Pinteractionwithdiabetes=5.3×10-7). Furthermore, in smokers, rs12910984 at the CHRNA3 locus was associated with PAD (odds ratio [95% CI], 1.15 [1.11-1.19], Psmokers=9.3×10-10, Pinteractionwithsmoking=3.9×10-5). CONCLUSIONS: Our analyses confirm the published genetic associations with PAD and identify novel variants that may influence susceptibility to PAD in the context of diabetes or smoking status.


Assuntos
Predisposição Genética para Doença , Doença Arterial Periférica/genética , Polimorfismo de Nucleotídeo Único , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Doença Arterial Periférica/epidemiologia
18.
Diabetes ; 70(10): 2391-2401, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244239

RESUMO

Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 1/genética , Proteínas de Ligação a Ácido Graxo/genética , Adulto , Alelos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Dinamarca/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Angiopatias Diabéticas/epidemiologia , Angiopatias Diabéticas/genética , Feminino , Finlândia/epidemiologia , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
19.
J Am Soc Nephrol ; 32(10): 2634-2651, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34261756

RESUMO

BACKGROUND: Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. METHODS: Gene-based exome array analyses of 15,449 genes in five large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time to ESKD, testing the top gene in a sixth cohort (n=2372/1115 events all cohorts) and replicating in two retrospective case-control studies (n=1072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS: Protein coding variants in the hydroxysteroid 17-ß dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n=4196; P value=3.3 × 10-7). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. CONCLUSIONS: HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Nefropatias Diabéticas/genética , Falência Renal Crônica/genética , Adulto , Animais , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Exoma , Feminino , Expressão Gênica , Variação Genética , Humanos , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Túbulos Renais Proximais/enzimologia , Masculino , Camundongos , Pessoa de Meia-Idade , Elementos Estruturais de Proteínas/genética , Traumatismo por Reperfusão/complicações , Estudos Retrospectivos , Taxa de Sobrevida
20.
Sci Rep ; 11(1): 9464, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947878

RESUMO

Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10-7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22-0.90] and 0.60 [0.30-1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.


Assuntos
Infecções Bacterianas/genética , Diabetes Mellitus/genética , Diabetes Mellitus/microbiologia , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Feminino , Finlândia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...