Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(4): 336-346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38073602

RESUMO

BACKGROUND: Silicon nanopore membrane-based implantable bioartificial organs are dependent on arteriovenous implantation of a mechanically robust and biocompatible hemofilter. The hemofilter acts as a low-resistance, high-flow network, with blood flow physiology similar to arteriovenous shunts commonly created for hemodialysis access. A mock circulatory loop (MCL) that mimics shunt physiology is an essential tool for refinement and durability testing of arteriovenous implantable bioartificial organs and silicon blood-interfacing membranes. We sought to develop a compact and cost-effective MCL to replicate flow conditions through an arteriovenous shunt and used data from the MCL and swine to inform a bond graph mathematical model of the physical setup. METHODS: Flow physiology through bioartificial organ prototypes was obtained in the MCL and during extracorporeal attachment to swine for biologic comparison. The MCL was tested for stability overtime by measuring pressurewave variability over a 48-h period. Data obtained in vitro and extracorporeally informed creation of a bond graph model of the MCL. RESULTS: The arteriovenous MCL was a cost-effective, portable system that reproduced flow rates and pressures consistent with a pulsatile arteriovenous shunt as measured in swine. MCL performance was stable over prolonged use, providing a cost-effective simulator for enhanced testing of peripherally implanted bioartificial organ prototypes. The corresponding bond graph model recapitulates MCL and animal physiology, offering a tool for further refinement of the MCL system.


Assuntos
Derivação Arteriovenosa Cirúrgica , Órgãos Bioartificiais , Sistema Cardiovascular , Animais , Suínos , Silício , Hemodinâmica
2.
Diagnostics (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835883

RESUMO

Since its introduction in 2016, researchers have applied the idea of Federated Learning (FL) to several domains ranging from edge computing to banking. The technique's inherent security benefits, privacy-preserving capabilities, ease of scalability, and ability to transcend data biases have motivated researchers to use this tool on healthcare datasets. While several reviews exist detailing FL and its applications, this review focuses solely on the different applications of FL to medical imaging datasets, grouping applications by diseases, modality, and/or part of the body. This Systematic Literature review was conducted by querying and consolidating results from ArXiv, IEEE Xplorer, and PubMed. Furthermore, we provide a detailed description of FL architecture, models, descriptions of the performance achieved by FL models, and how results compare with traditional Machine Learning (ML) models. Additionally, we discuss the security benefits, highlighting two primary forms of privacy-preserving techniques, including homomorphic encryption and differential privacy. Finally, we provide some background information and context regarding where the contributions lie. The background information is organized into the following categories: architecture/setup type, data-related topics, security, and learning types. While progress has been made within the field of FL and medical imaging, much room for improvement and understanding remains, with an emphasis on security and data issues remaining the primary concerns for researchers. Therefore, improvements are constantly pushing the field forward. Finally, we highlighted the challenges in deploying FL in medical imaging applications and provided recommendations for future directions.

3.
Phys Occup Ther Pediatr ; 43(3): 351-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446743

RESUMO

AIMS: The objective of this case series was to examine the feasibility of vibrotactile EMG-based biofeedback (BF) as a home-based intervention tool to enhance sensory information during everyday motor activities and to explore its effectiveness to induce changes in active ankle range of motion during gait in children with spastic cerebral palsy (CP). METHODS: Ten children ages 6 to 13 years with spastic CP were recruited. Participants wore two EMG-based vibro-tactile BF devices for at least 4 hours per day for 1-month on the ankle and knee joints muscles. The device computed the amplitude of the EMG signal of the target muscle and actuated a silent vibration motor proportional to the magnitude of the EMG. RESULTS: Our results demonstrated the feasibility of the augmented sensory information of muscle activity to induce changes of the active ankle range of motion during gait for 6 children with an increase ranging from 8.9 to 51.6% compared to a one-month period without treatment. CONCLUSIONS: Preliminary findings of this case series demonstrate the feasibility of vibrotactile EMG-based BF and suggest potential effectiveness to increase active ankle range of motion, therefore serving as a promising therapeutic tool to improve gait in children with spastic CP.


Assuntos
Tornozelo , Paralisia Cerebral , Humanos , Criança , Adolescente , Espasticidade Muscular , Paralisia Cerebral/terapia , Eletromiografia/métodos , Marcha/fisiologia , Biorretroalimentação Psicológica/métodos , Amplitude de Movimento Articular/fisiologia , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...