Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pain ; 24(9): 1664-1680, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150382

RESUMO

Opioids are powerful analgesics commonly used in pain management. However, opioids can induce complex neuroadaptations, including synaptic plasticity, that ultimately drive severe side effects, such as pain hypersensitivity and strong aversion during prolonged administration or upon drug withdrawal, even following a single, brief administration. The lateral parabrachial nucleus (LPBN) in the brainstem plays a key role in pain and emotional processing; yet, the effects of opioids on synaptic plasticity in this area remain unexplored. Using patch-clamp recordings in acute brainstem slices from male and female Sprague Dawley rats, we demonstrate a concentration-dependent, bimodal effect of opioids on excitatory synaptic transmission in the LPBN. While a lower concentration of DAMGO (0.5 µM) induced a long-term depression of synaptic strength (low-DAMGO LTD), abrupt termination of a higher concentration (10 µM) induced a long-term potentiation (high-DAMGO LTP) in a subpopulation of cells. LTD involved a metabotropic glutamate receptor (mGluR)-dependent mechanism; in contrast, LTP required astrocytes and N-methyl-D-aspartate receptor (NMDAR) activation. Selective optogenetic activation of spinal and periaqueductal gray matter (PAG) inputs to the LPBN revealed that, while LTD was expressed at all parabrachial synapses tested, LTP was restricted to spino-parabrachial synapses. Thus, we uncovered previously unknown forms of opioid-induced long-term plasticity in the parabrachial nucleus that potentially modulate some adverse effects of opioids. PERSPECTIVE: We found a previously unrecognized site of opioid-induced plasticity in the lateral parabrachial nucleus, a key region for pain and emotional processing. Unraveling opioid-induced adaptations in parabrachial function might facilitate the identification of new therapeutic measures for addressing adverse effects of opioid discontinuation such as hyperalgesia and aversion.


Assuntos
Analgésicos Opioides , Clínicas de Dor , Ratos , Masculino , Feminino , Animais , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Plasticidade Neuronal/fisiologia , Tronco Encefálico , Dor
2.
Front Cell Neurosci ; 17: 1163171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082205

RESUMO

The clinical burden faced by chronic pain patients is compounded by affective comorbidities, such as depression and anxiety disorders. Emerging evidence suggests that reactive glial cells in the spinal cord dorsal horn play a key role in the chronification of pain, while supraspinal glia are important for psychological aspects of chronic pain. The lateral parabrachial nucleus (LPBN) in the brainstem is a key node in the ascending pain system, and is crucial for the emotional dimension of pain. Yet, whether astrocytes and microglia in the LPBN are activated during chronic pain is unknown. Here, we evaluated the occurrence of glial activation in the LPBN of male Sprague-Dawley rats 1, 4, and 7 weeks after inducing a chronic constriction injury (CCI) of the sciatic nerve, a prevalent neuropathic pain model. CCI animals developed mechanical and thermal hypersensitivity that persisted for at least 4 weeks, and was mostly reversed after 7 weeks. Using immunohistochemical staining and confocal imaging, we found that CCI caused a strong increase in the expression of the astrocytic marker GFAP and the microglial marker Iba1 in the ipsilateral spinal dorsal horn, with peak expression observed 1 week post-injury. Moreover, morphology analysis revealed changes in microglial phenotype, indicative of microglia activation. In contrast, CCI did not induce any detectable changes in either astrocytes or microglia in the LPBN, at any time point. Thus, our results indicate that while neuropathic pain induces a robust glial reaction in the spinal dorsal horn, it fails to activate glial cells in the LPBN.

3.
Mol Pain ; 19: 17448069231156657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717755

RESUMO

The aversive aspect of pain constitutes a major burden faced by pain patients. This has been recognized by the pain research community, leading to the development of novel methods focusing on affective-motivational behaviour in pain model animals. The most common tests used to assess pain aversion in animals require cognitive processes, such as associative learning, complicating the interpretation of results. To overcome this issue, studies in recent years have utilized unconditioned escape as a measure of aversion. However, the vast majority of these studies quantify jumping - a common escape behaviour in mice, but not in adult rats, thus limiting its use. Here, we present the "Heat Escape Threshold" (HET) paradigm for assessing heat aversion in rats. We demonstrate that this method can robustly and reproducibly detect the localized effects of an inflammatory pain model (intraplantar carrageenan) in male and female Sprague-Dawley rats. In males, a temperature that evoked unconditioned escape following carrageenan treatment also induced real-time place avoidance (RTPA). Systemic morphine more potently alleviated carrageenan-induced heat aversion (as measured by the HET and RTPA methods), as compared to reflexive responses to heat (as measured by the Hargreaves test), supporting previous findings. Next, we examined how blocking of excitatory transmission to the lateral parabrachial nucleus (LPBN), a key node in the ascending pain system, affects pain behaviour. Using the HET and Hargreaves tests, we show that intra-LPBN application of glutamate antagonists reverses the effects of carrageenan on both affective and reflexive pain behaviour, respectively. Finally, we employed the HET paradigm in a generalized opioid-withdrawal pain model. Withdrawal from a brief systemic administration of remifentanil resulted in a long-lasting and robust increase in heat aversion, but no change in reflexive responses to heat. Taken together, these data demonstrate the utility of the HET paradigm as a novel tool in preclinical pain research.


Assuntos
Aprendizagem da Esquiva , Temperatura Alta , Ratos , Masculino , Feminino , Animais , Camundongos , Ratos Sprague-Dawley , Carragenina/efeitos adversos , Dor/tratamento farmacológico , Morfina/farmacologia , Limiar da Dor
4.
J Neurosci ; 42(27): 5373-5388, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35667849

RESUMO

Pain and emotion are strongly regulated by neurons in the central nucleus of the amygdala (CeA), a major output of the limbic system; yet, the neuronal signaling pathways underlying this modulation are incompletely understood. Here, we characterized a subpopulation of CeA neurons that express the CaMKIIα gene (CeACAM neurons) and project to the lateral parabrachial nucleus (LPBN), a brainstem region known for its critical role in distributing nociceptive and other aversive signals throughout the brain. In male Sprague Dawley rats, we show that CeACAM-LPBN neurons are GABAergic and mostly express somatostatin. In anaesthetized rats, optogenetic stimulation of CeACAM-LPBN projections inhibited responses of LPBN neurons evoked by electrical activation of Aδ- and C-fiber primary afferents; this inhibition could be blocked by intra-LPBN application of the GABAA receptor antagonist bicuculline. CeACAM-LPBN stimulation also dampened LPBN responses to noxious mechanical, thermal, and chemical stimuli. In behaving rats, optogenetic stimulation of CeACAM-LPBN projections attenuated nocifensive responses to mechanical pressure and radiant heat, disrupted the ability of a noxious shock to drive aversive learning, reduced the defensive behaviors of thigmotaxis and freezing, induced place preference, and promoted food consumption in sated rats. Thus, we suggest that CeACAM-LPBN projections mediate a form of analgesia that is accompanied by a shift toward the positive-appetitive pole of the emotional-motivational continuum. Since the affective state of pain patients strongly influences their prognosis, we envision that recruitment of this pathway in a clinical setting could potentially promote pain resilience and recovery.SIGNIFICANCE STATEMENT Pain and emotion interact on multiple levels of the nervous system. Both positive and negative emotion may have analgesic effects. However, while the neuronal mechanisms underlying "stress-induced analgesia" have been the focus of many studies, the neuronal substrates underlying analgesia accompanied by appetitive emotional-motivational states have received far less attention. The current study focuses on a subpopulation of amygdala neurons that form inhibitory synapses within the brainstem lateral parabrachial nucleus (LPBN). We show that activation of these amygdalo-parabrachial projections inhibits pain processing, while also reducing behaviors related to negative affect and enhancing behaviors related to positive affect. We propose that recruitment of this pathway would benefit pain patients, many of whom suffer from psychological comorbidities such as anxiety and depression.


Assuntos
Tonsila do Cerebelo , Núcleos Parabraquiais , Tonsila do Cerebelo/fisiologia , Animais , Emoções , Masculino , Vias Neurais/fisiologia , Dor , Núcleos Parabraquiais/fisiologia , Ratos , Ratos Sprague-Dawley
5.
J Pain ; 23(8): 1410-1426, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35339662

RESUMO

The lateral parabrachial nucleus (LPBN) plays an important role in the processing and establishment of pain aversion. It receives direct input from the superficial dorsal horn and forms reciprocal connections with the periaqueductal grey matter (PAG), which is critical for adaptive behaviour and the modulation of pain processing. Here, using in situ hybridization and optogenetics combined with in vitro electrophysiology, we characterized the spinal- and PAG-LPBN circuits of rats. We found spinoparabrachial projections to be strictly glutamatergic, while PAG neurons send glutamatergic and GABAergic projections to the LPBN. We next investigated the effects of drugs with anti-aversive and/or anti-nociceptive properties on these synapses: The µ-opioid receptor agonist DAMGO (10 µM) reduced spinal and PAG synaptic inputs onto LPBN neurons, and the excitability of LPBN neurons receiving these inputs. The benzodiazepine receptor agonist diazepam (5 µM) strongly enhanced GABAergic action at inhibitory PAG-LPBN synapses. The cannabinoid receptor agonist WIN 55,212-2 (5 µM) led to a reduction in inhibitory and excitatory PAG-LPBN synaptic transmission, without affecting excitatory spinoparabrachial synaptic transmission. Our study reveals that opioid, cannabinoid and benzodiazepine receptor agonists differentially affect distinct LPBN synapses. These findings may support the efforts to develop pinpointed therapies for pain patients. PERSPECTIVE: The LPBN is an important brain region for the control of pain aversion versus recuperation, and as such constitutes a promising target for developing new strategies for pain management. We show that clinically-relevant drugs have complex and pathway-specific effects on LPBN processing of putative nociceptive and aversive inputs.


Assuntos
Núcleos Parabraquiais , Analgésicos Opioides/farmacologia , Animais , Dor , Núcleos Parabraquiais/fisiologia , Substância Cinzenta Periaquedutal , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A
6.
Glia ; 69(7): 1749-1766, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33694249

RESUMO

Astrocytes are indispensable for proper neuronal functioning. Given the diverse needs of neuronal circuits and the variety of tasks astrocytes perform, the perceived homogeneous nature of astrocytes has been questioned. In the spinal dorsal horn, complex neuronal circuitries regulate the integration of sensory information of different modalities. The dorsal horn is organized in a distinct laminar manner based on termination patterns of high- and low-threshold afferent fibers and neuronal properties. Neurons in laminae I (L1) and II (L2) integrate potentially painful, nociceptive information, whereas neurons in lamina III (L3) and deeper laminae integrate innocuous, tactile information from the periphery. Sensory information is also integrated by an uncharacterized network of astrocytes. How these lamina-specific characteristics of neuronal circuits of the dorsal horn are of functional importance for properties of astrocytes is currently unknown. We addressed if astrocytes in L1, L2, and L3 of the upper dorsal horn of mice are differentially equipped for the needs of neuronal circuits that process sensory information of different modalities. We found that astrocytes in L1 and L2 were characterized by a higher density, higher expression of GFAP, Cx43, and GLAST and a faster coupling speed than astrocytes located in L3. L1 astrocytes were more responsive to Kir4.1 blockade and had higher levels of AQP4 compared to L3 astrocytes. In contrast, basic membrane properties, network formation, and somatic intracellular calcium signaling were similar in L1-L3 astrocytes. Our data indicate that the properties of spinal astrocytes are fine-tuned for the integration of nociceptive versus tactile information.


Assuntos
Astrócitos , Corno Dorsal da Medula Espinal , Animais , Camundongos , Neurônios , Células do Corno Posterior/fisiologia , Medula Espinal
7.
Front Pain Res (Lausanne) ; 2: 672711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295455

RESUMO

In pain patients affective and motivational reactions as well as impairment of daily life activities dominate the clinical picture. In contrast, many rodent pain models have been established on the basis of mechanical hypersensitivity testing. Up to today most rodent studies on pain still rely on reflexive withdrawal responses only. This discrepancy has likely contributed to the low predictive power of preclinical pain models for novel therapies. Here, we used a behavioural test array for rats to behaviourally evaluate five aetiologically distinct pain models consisting of inflammatory-, postsurgical-, cephalic-, neuropathic- and chemotherapy-induced pain. We assessed paralleling clinical expressions and comorbidities of chronic pain with an array of behavioural tests to assess anxiety, social interaction, distress, depression, and voluntary/spontaneous behaviours. Pharmacological treatment of the distinct pain conditions was performed with pathology-specific and clinically efficacious analgesics as gabapentin, sumatriptan, naproxen, and codeine. We found that rats differed in their manifestation of symptoms depending on the pain model and that pathology-specific analgesics also reduced the associated behavioural parameters. Based on all behavioural test performed, we screened for tests that can discriminate experimental groups on the basis of reflexive as well as non-sensory, affective parameters. Together, we propose a set of non-evoked behaviours with a comparable predictive power to mechanical threshold testing for each pain model.

8.
Pain ; 161(9): 2022-2034, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32345917

RESUMO

ABSTRACT: Withdrawal from systemic opioids can induce long-term potentiation (LTP) at spinal C-fibre synapses ("opioid-withdrawal-LTP"). This is considered to be a cellular mechanism underlying opioid withdrawal-induced hyperalgesia, which is a major symptom of the opioid withdrawal syndrome. Opioids can activate glial cells leading to the release of proinflammatory mediators. These may influence synaptic plasticity and could thus contribute to opioid-withdrawal-LTP. Here, we report a sexual dimorphism in the mechanisms of morphine-withdrawal-LTP in adult rats. We recorded C-fibre-evoked field potentials in the spinal cord dorsal horn from deeply anaesthetised male and female rats. In both sexes, we induced a robust LTP through withdrawal from systemic morphine infusion (8 mg·kg-1 bolus, followed by a 1-hour infusion at a rate of 14 mg·kg-1·h-1). This paradigm also induced mechanical hypersensitivity of similar magnitude in both sexes. In male rats, systemic but not spinal application of (-)naloxone blocked the induction of morphine-withdrawal-LTP, suggesting the involvement of descending pronociceptive pathways. Furthermore, we showed that in male rats, the induction of morphine-withdrawal-LTP required the activation of spinal astrocytes and the release of the proinflammatory cytokines tumour necrosis factor and interleukin-1. In striking contrast, in female rats, the induction of morphine-withdrawal-LTP was independent of spinal glial cells. Instead, blocking µ-opioid receptors in the spinal cord was sufficient to prevent a facilitation of synaptic strength. Our study revealed fundamental sex differences in the mechanisms underlying morphine-withdrawal-LTP at C-fibre synapses: supraspinal and gliogenic mechanisms in males and a spinal, glial cell-independent mechanism in females.


Assuntos
Morfina , Caracteres Sexuais , Animais , Feminino , Potenciação de Longa Duração , Masculino , Naloxona/farmacologia , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley , Medula Espinal
10.
Pain ; 160(12): 2819-2828, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433351

RESUMO

Opioids are the most powerful analgesics available to date. However, they may also induce adverse effects including paradoxical opioid-induced hyperalgesia. A mechanism that might underlie opioid-induced hyperalgesia is the amplification of synaptic strength at spinal C-fibre synapses after withdrawal from systemic opioids such as remifentanil ("opioid-withdrawal long-term potentiation [LTP]"). Here, we show that both the induction as well as the maintenance of opioid-withdrawal LTP were abolished by pharmacological blockade of spinal glial cells. By contrast, the blockade of TLR4 had no effect on the induction of opioid-withdrawal LTP. D-serine, which may be released upon glial cell activation, was necessary for withdrawal LTP. D-serine is the dominant coagonist for neuronal NMDA receptors, which are required for the amplification of synaptic strength on remifentanil withdrawal. Unexpectedly, opioid-withdrawal LTP was transferable through the cerebrospinal fluid between animals. This suggests that glial-cell-derived mediators accumulate in the extracellular space and reach the cerebrospinal fluid at biologically active concentrations, thereby creating a soluble memory trace that is transferable to another animal ("transfer LTP"). When we enzymatically degraded D-serine in the superfusate, LTP could no longer be transferred. Transfer LTP was insensitive to pharmacological blockade of glial cells in the recipient animal, thus representing a rare form of glial cell-independent LTP in the spinal cord.


Assuntos
Analgésicos Opioides/efeitos adversos , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Remifentanil/efeitos adversos , Síndrome de Abstinência a Substâncias/líquido cefalorraquidiano , Analgésicos Opioides/farmacologia , Animais , Masculino , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Ratos , Ratos Sprague-Dawley
11.
J Clin Neurosci ; 40: 195-197, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28279552

RESUMO

Mechanism-based therapy for chronic pain is desperately needed. Recent basic science research demonstrated that remifentanil can reverse long-term potentiation at C-fiber synapses in the dorsal horn of rats. In this exploratory, single group study, patients with chronic post-herpetic pain were treated with a single, one-hour, high-dose remifentanil infusion. The mean overall change of pain intensity seven days after treatment was -18 (-7.5; -28.5, 95%CI, p<0.001) points on the numeric rating scale (0-100) (-33 (±11) points amongst responders only). Eleven of 20 patients responded to treatment (≥30% reduction in pain), the mean relative reduction in pain from baseline amongst responders was 61.0%. These promising preliminary results suggest that a mechanism-based reversal of chronic pain may be impending.


Assuntos
Neuralgia Pós-Herpética/tratamento farmacológico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Remifentanil
13.
J Neurosci ; 35(26): 9580-94, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134641

RESUMO

Due to its distinct pharmacological profile and lower incidence of adverse events compared with other opioids, buprenorphine is considered a safe option for pain and substitution therapy. However, despite its wide clinical use, little is known about the synaptic effects of buprenorphine in nociceptive pathways. Here, we demonstrate dose-dependent, bimodal effects of buprenorphine on transmission at C-fiber synapses in rat spinal cord dorsal horn in vivo. At an analgesically active dose of 1500 µg·kg(-1), buprenorphine reduced the strength of spinal C-fiber synapses. This depression required activation of spinal opioid receptors, putatively µ1-opioid receptors, as indicated by its sensitivity to spinal naloxone and to the selective µ1-opioid receptor antagonist naloxonazine. In contrast, a 15,000-fold lower dose of buprenorphine (0.1 µg·kg(-1)), which caused thermal and mechanical hyperalgesia in behaving animals, induced an enhancement of transmission at spinal C-fiber synapses. The ultra-low-dose buprenorphine-induced synaptic facilitation was mediated by supraspinal naloxonazine-insensitive, but CTOP-sensitive µ-opioid receptors, descending serotonergic pathways, and activation of spinal glial cells. Selective inhibition of spinal 5-hydroxytryptamine-2 receptors (5-HT2Rs), putatively located on spinal astrocytes, abolished both the induction of synaptic facilitation and the hyperalgesia elicited by ultra-low-dose buprenorphine. Our study revealed that buprenorphine mediates its modulatory effects on transmission at spinal C-fiber synapses by dose dependently acting on distinct µ-opioid receptor subtypes located at different levels of the neuraxis.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Limiar da Dor/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Técnicas In Vitro , Masculino , Naloxona/análogos & derivados , Naloxona/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/metabolismo , Medição da Dor/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia , Raízes Nervosas Espinhais/citologia , Fatores de Tempo
14.
J Neurosci ; 35(11): 4552-70, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25788673

RESUMO

Synaptic plasticity is thought to be initiated by neurons only, with the prevailing view assigning glial cells mere specify supportive functions for synaptic transmission and plasticity. We now demonstrate that glial cells can control synaptic strength independent of neuronal activity. Here we show that selective activation of microglia in the rat is sufficient to rapidly facilitate synaptic strength between primary afferent C-fibers and lamina I neurons, the first synaptic relay in the nociceptive pathway. Specifically, the activation of the CX3CR1 receptor by fractalkine induces the release of interleukin-1ß from microglia, which modulates NMDA signaling in postsynaptic neurons, leading to the release of an eicosanoid messenger, which ultimately enhances presynaptic neurotransmitter release. In contrast to the conventional view, this form of plasticity does not require enhanced neuronal activity to trigger the events leading to synaptic facilitation. Augmentation of synaptic strength in nociceptive pathways represents a cellular model of pain amplification. The present data thus suggest that, under chronic pain states, CX3CR1-mediated activation of microglia drives the facilitation of excitatory synaptic transmission in the dorsal horn, which contributes to pain hypersensitivity in chronic pain states.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Microglia/fisiologia , Transmissão Sináptica/fisiologia , Animais , Masculino , Plasticidade Neuronal , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/fisiologia
15.
Pain ; 156(2): 243-251, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25599445

RESUMO

Distinct subsets of sensory nerve fibres are involved in mediating mechanical and thermal pain hypersensitivity. They may also differentially respond to analgesics. Heat-sensitive C-fibres, for example, are thought to respond to µ-opioid receptor (MOR) activation while mechanoreceptive fibres are supposedly sensitive to δ-opioid receptor (DOR) or GABAB receptor (GABABR) activation. The suggested differential distribution of inhibitory neurotransmitter receptors on different subsets of sensory fibres is, however, heavily debated. In this study, we quantitatively compared the degree of presynaptic inhibition exerted by opioids and the GABABR agonist baclofen on (1) vesicular glutamate transporter subtype 3-positive (VGluT3) non-nociceptive primary afferent fibres and (2) putative nociceptive C-fibres. To investigate VGluT3 sensory fibres, we evoked excitatory postsynaptic currents with blue light at the level of the dorsal root ganglion (DRG) in spinal cord slices of mice, expressing channelrhodopsin-2. Putative nociceptive C-fibres were explored in VGluT3-knockout mice through electrical stimulation. The MOR agonist DAMGO strongly inhibited both VGluT3 and VGluT3 C-fibres innervating lamina I neurons but generally had less influence on fibres innervating lamina II neurons. The DOR agonist SNC80 did not have any pronounced effect on synaptic transmission in any fibre type tested. Baclofen, in striking contrast, powerfully inhibited all fibre populations investigated. In summary, we report optogenetic stimulation of DRG neurons in spinal slices as a capable approach for the subtype-selective investigation of primary afferent nerve fibres. Overall, pharmacological accessibility of different subtypes of sensory fibres considerably overlaps, indicating that MOR, DOR, and GABABR expressions are not substantially segregated between heat and mechanosensitive fibres.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/biossíntese , Analgésicos Opioides/farmacologia , Baclofeno/farmacologia , Optogenética/métodos , Terminações Pré-Sinápticas/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Agonistas dos Receptores de GABA-B/farmacologia , Masculino , Camundongos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
J Neurosci ; 34(36): 12015-28, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186747

RESUMO

Sensory nerve fibers differ not only with respect to their sensory modalities and conduction velocities, but also in their relative roles for pain hypersensitivity. It is presently largely unknown which types of sensory afferents contribute to various forms of neuropathic and inflammatory pain hypersensitivity. Vesicular glutamate transporter 3-positive (VGluT3(+)) primary afferents, for example, have been implicated in mechanical hypersensitivity after inflammation, but their role in neuropathic pain remains under debate. Here, we investigated a possible etiology-dependent contribution of VGluT3(+) fibers to mechanical and cold hypersensitivity in different models of inflammatory and neuropathic pain. In addition to VGluT3(-/-) mice, we used VGluT3-channelrhodopsin 2 mice to selectively stimulate VGluT3(+) sensory afferents by blue light, and to assess light-evoked behavior in freely moving mice. We show that VGluT3(-/-) mice develop reduced mechanical hypersensitivity upon carrageenan injection. Both mechanical and cold hypersensitivity were reduced in VGluT3(-/-) mice in neuropathic pain evoked by the chemotherapeutic oxaliplatin, but not in the chronic constriction injury (CCI) model of the sciatic nerve. Further, we provide direct evidence that, despite not mediating painful stimuli in naive mice, activation of VGluT3(+) sensory fibers by light elicits pain behavior in the oxaliplatin but not the CCI model. Immunohistochemical and electrophysiological data support a role of transient receptor potential melastatin 8-mediated facilitation of synaptic strength at the level of the dorsal horn as an underlying mechanism. Together, we demonstrate that VGluT3(+) fibers contribute in an etiology-dependent manner to the development of mechano-cold hypersensitivity.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Temperatura Baixa , Hiperalgesia/fisiopatologia , Neurônios Aferentes/fisiologia , Tato , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Carragenina/toxicidade , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/metabolismo , Dor Nociceptiva/etiologia , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Ciática/etiologia , Ciática/metabolismo , Ciática/fisiopatologia
17.
Nat Rev Neurol ; 10(9): 529-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25072195

RESUMO

Terrible, agonizing, wretched, sickening and unbearable--these are words frequently used by patients with neuromyelitis optica (NMO) to describe a very common symptom of their disease: pain. More than 80% of patients with NMO experience pain from this condition, which severely affects their quality of life. At present, there is no known therapy that produces satisfactory relief from NMO-associated pain. In fact, contemporary pain therapy is largely ineffective in these patients, suggesting that the mechanisms underlying pain in NMO differ substantially from those of other treatable causes of pain. Until now, the near-complete neglect of research into pain mechanisms in NMO has precluded rational pain therapy. In this Perspectives article, expertise from the fields of neuroimmunology, neurology and pain research is combined to explore, for the first time, the mechanisms underlying pain in patients with NMO, and to identify molecular and cellular targets for therapy.


Assuntos
Neuromielite Óptica/complicações , Manejo da Dor , Dor/etiologia , Humanos , Dor/epidemiologia , Prevalência
18.
Nat Rev Neurosci ; 15(1): 43-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24281245

RESUMO

The CNS is endowed with an elaborated response repertoire termed 'neuroinflammation', which enables it to cope with pathogens, toxins, traumata and degeneration. On the basis of recent publications, we deduce that orchestrated actions of immune cells, vascular cells and neurons that constitute neuroinflammation are not only provoked by pathological conditions but can also be induced by increased neuronal activity. We suggest that the technical term 'neurogenic neuroinflammation' should be used for inflammatory reactions in the CNS in response to neuronal activity. We believe that neurogenic neuro-inflammation maintains homeostasis to enable the CNS to cope with enhanced metabolic demands and increases the computational power and plasticity of CNS neuronal networks. However, neurogenic neuroinflammation may also become maladaptive and aggravate the outcomes of pain, stress and epilepsy.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Neurônios/imunologia , Dor/imunologia , Dor/metabolismo , Dor/patologia
19.
PLoS One ; 8(8): e73370, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009748

RESUMO

Adequate pain sensitivity requires a delicate balance between excitation and inhibition in the dorsal horn of the spinal cord. This balance is severely impaired in neuropathy leading to enhanced pain sensations (hyperalgesia). The underlying mechanisms remain elusive. Here we explored the hypothesis that the excitatory drive to spinal GABAergic neurons might be impaired in neuropathic animals. Transgenic adult mice expressing EGFP under the promoter for GAD67 underwent either chronic constriction injury of the sciatic nerve or sham surgery. In transverse slices from lumbar spinal cord we performed whole-cell patch-clamp recordings from identified GABAergic neurons in lamina II. In neuropathic animals rates of mEPSC were reduced indicating diminished global excitatory input. This downregulation of excitatory drive required a rise in postsynaptic Ca(2+). Neither the density and morphology of dendritic spines on GABAergic neurons nor the number of excitatory synapses contacting GABAergic neurons were affected by neuropathy. In contrast, paired-pulse ratio of Aδ- or C-fiber-evoked monosynaptic EPSCs following dorsal root stimulation was increased in neuropathic animals suggesting reduced neurotransmitter release from primary afferents. Our data indicate that peripheral neuropathy triggers Ca(2+)-dependent signaling pathways in spinal GABAergic neurons. This leads to a global downregulation of the excitatory drive to GABAergic neurons. The downregulation involves a presynaptic mechanism and also applies to the excitation of GABAergic neurons by presumably nociceptive Aδ- and C-fibers. This then leads to an inadequately low recruitment of inhibitory interneurons during nociception. We suggest that this previously unrecognized mechanism of impaired spinal inhibition contributes to hyperalgesia in neuropathy.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos/metabolismo , Células do Corno Posterior/fisiopatologia , Animais , Comportamento Animal , Sinalização do Cálcio , Moduladores de Receptores de Canabinoides/farmacologia , Espinhas Dendríticas , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Temperatura Alta , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Fibras Nervosas Amielínicas/metabolismo , Neuralgia/fisiopatologia , Limiar da Dor , Estimulação Física , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo
20.
Pain ; 154(8): 1333-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707311

RESUMO

Current concepts of memory storage are largely based on Hebbian-type synaptic long-term potentiation induced by concurrent activity of pre- and postsynaptic neurons. Little is known about non-Hebbian synaptic plasticity, which, if present in nociceptive pathways, could resolve a number of unexplained findings. We performed whole-cell patch-clamp recordings in rat spinal cord slices and found that a rise in postsynaptic [Ca(2+)]i due to postsynaptic depolarization was sufficient to induce synaptic long-term potentiation (LTP) in the absence of any presynaptic conditioning stimulation. LTP induction could be prevented by postsynaptic application of the Ca(2+) chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), the L-type voltage-gated calcium channel (VGCC) antagonist nifedipine, and by postsynaptic application of the NMDA receptor antagonist MK801. This indicates that synaptic potentiation was induced postsynaptically by Ca(2+) entry likely via L-type voltage-gated Ca(2+) channels (VGCC) and via NMDA receptor channels. The paired pulse ratio and the coefficient of variation remained unchanged in neurons expressing LTP, suggesting that this form of synaptic potentiation was not only induced, but also expressed postsynaptically. Postsynaptic depolarization had no influence on firing patterns, action potential shape, or neuronal excitability. An increase in [Ca(2+)]i in spinal lamina I neurons induces a non-Hebbian form of synaptic plasticity in spinal nociceptive pathways without affecting neuronal active and passive membrane properties.


Assuntos
Potenciação de Longa Duração/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Maleato de Dizocilpina/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Rianodina/farmacologia , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...