Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Mol Life Sci ; 80(2): 53, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707427

RESUMO

Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder caused by biallelic mutations in the lysosomal trafficking regulator (LYST) gene. Even though enlarged lysosomes and/or lysosome-related organelles (LROs) are the typical cellular hallmarks of CHS, they have not been investigated in human neuronal models. Moreover, how and why the loss of LYST function causes a lysosome phenotype in cells has not been elucidated. We report that the LYST-deficient human neuronal model exhibits lysosome depletion accompanied by hyperelongated tubules extruding from enlarged autolysosomes. These results have also been recapitulated in neurons differentiated from CHS patients' induced pluripotent stem cells (iPSCs), validating our model system. We propose that LYST ensures the correct fission/scission of the autolysosome tubules during autophagic lysosome reformation (ALR), a crucial process to restore the number of free lysosomes after autophagy. We further demonstrate that LYST is recruited to the lysosome membrane, likely to facilitate the fission of autolysosome tubules. Together, our results highlight the key role of LYST in maintaining lysosomal homeostasis following autophagy and suggest that ALR dysregulation is likely associated with the neurodegenerative CHS phenotype.


Assuntos
Síndrome de Chediak-Higashi , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Lisossomos/fisiologia , Organelas , Autofagia/fisiologia , Síndrome de Chediak-Higashi/genética , Neurônios
3.
Stem Cell Res ; 47: 101883, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32619719

RESUMO

Chediak-Higashi Syndrome (CHS) is a lysosome-related organelle (LRO) disorder caused by biallelic mutations in the lysosomal trafficking regulator gene, LYST. The clinical features of CHS include oculocutaneous albinism, primary immunodeficiency, bleeding diathesis, risk for development of hemophagocyticlymphohistiocytosis,and progressive neurological problems. The pathophysiological mechanisms underlying this disease are unknown, so developing therapeutic options remains challenging. In this study,four induced pluripotent stem (iPSC) lines from unrelated CHS patients have been generated and successfully characterized for exploring the role of LYST in health and disease in diversecell types.

4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326381

RESUMO

Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell's (ER+BCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ER+BCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ER+BBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ER+BCCs leading to radiation resistance.


Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama/radioterapia , Leptina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Comunicação Parácrina/efeitos da radiação , Receptores de Estrogênio/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose/efeitos da radiação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Dano ao DNA/efeitos da radiação , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/metabolismo , Leptina/genética , Células MCF-7 , Camundongos , Estresse Oxidativo/efeitos da radiação , RNA Interferente Pequeno , Radiação , Receptores Notch/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...