Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 78: 153-161, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37913920

RESUMO

Integrated bioprocessing strategies can facilitate ethanol production from both cellulose and hemicellulose fractions of lignocellulosic biomass. Consolidated bioprocessing (CBP) is an approach that combines enzyme production, biomass hydrolysis and sugar fermentation in a single step. However, technologies that propose the use of microorganisms together with solid biomass present the difficulty of the recovery and reuse of the biocatalyst, which can be overcome by cell immobilization. In this regard, this work applied immobilized cells of AC14 yeast, a recombinant yeast that secretes 7 hydrolytic enzymes, in the CBP process in a successful proof-of-concept for the enzyme access to the substrate polymers. The most appropriate cell load for CBP under the conditions studied with immobilized cells was selected among three optical densities (OD) 10, 55 and 100. These experiments were performed with free cells to ensure that the results were not biased by mass limitations effects. OD 10 achieved 100% of the sugar consumption and the higher specific production of enzymes, being selected for further studies. Diffusional effects were observed with immobilized cells under static conditions. However, mass transfer limitations were mitigated under agitation, with an 18.5% increase in substrate consumption rate (from 2.7 to 3.5 g/L/h), reaching the same substrate uptake rates as free cells. In addition, immobilized cells achieved 100% hydrolysis and consumption of all substrates offered within only 12 h. Overall, this is the first report of a successful application of immobilized yeast cells in CBP processes for bioethanol production, a promising technology that can be extended to other biorefinery bioproducts.


Assuntos
Microbiologia Industrial , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fermentação , Hidrólise , Amido
2.
Biotechnol Biofuels ; 13: 85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426034

RESUMO

BACKGROUND: The search for sustainable energy sources has become a worldwide issue, making the development of efficient biofuel production processes a priority. Immobilization of second-generation (2G) xylose-fermenting Saccharomyces cerevisiae strains is a promising approach to achieve economic viability of 2G bioethanol production from undetoxified hydrolysates through operation at high cell load and mitigation of inhibitor toxicity. In addition, the use of a fixed-bed reactor can contribute to establish an efficient process because of its distinct advantages, such as high conversion rate per weight of biocatalyst and reuse of biocatalyst. RESULTS: This work assessed the influence of alginate entrapment on the tolerance of recombinant S. cerevisiae to acetic acid. Encapsulated GSE16-T18SI.1 (T18) yeast showed an outstanding performance in repeated batch fermentations with cell recycling in YPX medium supplemented with 8 g/L acetic acid (pH 5.2), achieving 10 cycles without significant loss of productivity. In the fixed-bed bioreactor, a high xylose fermentation rate with ethanol yield and productivity values of 0.38 gethanol/gsugars and 5.7 g/L/h, respectively were achieved in fermentations using undetoxified sugarcane bagasse hemicellulose hydrolysate, with and without medium recirculation. CONCLUSIONS: The performance of recombinant strains developed for 2G ethanol production can be boosted strongly by cell immobilization in alginate gels. Yeast encapsulation allows conducting fermentations in repeated batch mode in fixed-bed bioreactors with high xylose assimilation rate and high ethanol productivity using undetoxified hemicellulose hydrolysate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...