Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Appl Toxicol ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705171

RESUMO

In urban areas, inhalation of fine particles from combustion sources such as diesel engines causes adverse health effects. For toxicity testing, a substantial amount of particulate matter (PM) is needed. Conventional sampling involves collection of PM onto substrates by filtration or inertial impaction. A major drawback to those methodologies is that the extraction process can modify the collected particles and alter their chemical composition. Moreover, prior to toxicity testing, PM samples need to be resuspended, which can alter the PM sample even further. Lastly, the choice of the resuspension medium may also impact the detected toxicological responses. In this study, we compared the toxicity profile of PM obtained from two alternative sampling systems, using in vitro toxicity assays. One system makes use of condensational growth before collection in water in an impinger - BioSampler (CG-BioSampler), and the other, a Dekati® Gravimetric Impactor (DGI), is based on inertial impaction. In addition, various methods for resuspension of DGI collected PM were compared. Tested endpoints included cytotoxicity, formation of cellular reactive oxygen species, and genotoxicity. The alternative collection and suspension methods affected different toxicological endpoints. The water/dimethyl sulfoxide mixture and cell culture medium resuspended particles, along with the CG-BioSampler sample, produced the strongest responses. The water resuspended sample from the DGI appeared least toxic. CG-BioSampler collected PM caused a clear increased response in apoptotic cell death. We conclude that the CG-BioSampler PM sampler is a promising alternative to inertial impaction sampling.

2.
Eur Respir J ; 62(3)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620041

RESUMO

BACKGROUND: There is limited evidence on the pathways leading to severe asthma and we are presently unable to effectively predict the progression of the disease. We aimed to describe the longitudinal trajectories leading to severe asthma and to describe clinical events preceding disease progression in a nationwide population of patients with severe asthma. METHODS: We conducted an observational study based on Swedish data from the NORdic Dataset for aSThmA Research (NORDSTAR) research collaboration platform. We identified adult patients with severe asthma in 2018 according to the European Respiratory Society/American Thoracic Society definition and used latent class analysis to identify trajectories of asthma severity over a 10-year retrospective period from 2018. RESULTS: Among 169 128 asthma patients, we identified 4543 severe asthma patients. We identified four trajectories of severe asthma that were labelled as: trajectory 1 "consistently severe asthma" (n=389 (8.6%)), trajectory 2 "gradual onset severe asthma" (n=942 (20.7%)), trajectory 3 "intermittent severe asthma" (n=1685 (37.1%)) and trajectory 4 "sudden onset severe asthma" (n=1527 (33.6%)). "Consistently severe asthma" had a higher daily inhaled corticosteroid dose and more prevalent osteoporosis compared with the other trajectories. Patients with "gradual onset severe asthma" and "sudden onset severe asthma" developed type 2-related comorbidities concomitantly with development of severe asthma. In the latter group, this primarily occurred within 1-3 years preceding onset of severe asthma. CONCLUSIONS: Four distinct trajectories of severe asthma were identified illustrating different patterns of progression of asthma severity. This may eventually enable the development of better preventive management strategies in severe asthma.


Assuntos
Asma , Humanos , Adulto , Estudos Retrospectivos , Asma/epidemiologia , Taxa Respiratória , Brancos
3.
Part Fibre Toxicol ; 20(1): 30, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37517998

RESUMO

BACKGROUND: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity. METHODS: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549). RESULTS: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances. CONCLUSIONS: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.


Assuntos
Fumaça , Madeira , Humanos , Fumaça/efeitos adversos , Macrófagos , Fagocitose , Inflamação/induzido quimicamente , DNA , Líquido da Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversos
4.
Toxics ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37368632

RESUMO

Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ). The advanced multicellular physiologically relevant bronchial mucosa models were developed using human primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) in the presence or absence of THP-1 cell-derived macrophages (MQ). The experimental set-up used for BDEP and DEP exposures (18 µg/cm2 and 36 µg/cm2) as well as the corresponding control exposures were PBEC-ALI, MQ-ALI, and PBEC co-cultured with MQ (PBEC-ALI/MQ). Following exposure to both BDEP and DEP, reactive oxygen species as well as the stress protein heat shock protein 60 were upregulated in PBEC-ALI and MQ-ALI. Expression of both pro-inflammatory (M1: CD86) and repair (M2: CD206) macrophage polarization markers was increased in MQ-ALI after both BDEP and DEP exposures. Phagocytosis activity of MQ and the phagocytosis receptors CD35 and CD64 were downregulated, whereas CD36 was upregulated in MQ-ALI. Increased transcript and secreted protein levels of CXCL8, as well as IL-6 and TNF-α, were detected following both BDEP and DEP exposure at both doses in PBEC-ALI. Furthermore, the cyclooxygenase-2 (COX-2) pathway, COX-2-mediated histone phosphorylation and DNA damage were all increased in PBEC-ALI following exposure to both doses of BDEP and DEP. Valdecoxib, a COX-2 inhibitor, reduced the level of prostaglandin E2, histone phosphorylation, and DNA damage in PBEC-ALI following exposure to both concentrations of BDEP and DEP. Using physiologically relevant multicellular human lung mucosa models with human primary bronchial epithelial cells and macrophages, we found BDEP and DEP to induce comparable levels of oxidative stress, inflammatory response, and impairment of phagocytosis. The use of a renewable carbon-neutral biodiesel fuel does not appear to be more favorable than conventional petroleum-based alternative, as regards of its potential for adverse health effects.

5.
Brain Behav Immun ; 111: 249-258, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146653

RESUMO

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Assuntos
Asma , Interleucina-6 , Humanos , Asma/complicações , Ansiedade , Comorbidade , Inflamação/complicações , Biomarcadores
6.
Eur Clin Respir J ; 10(1): 2181291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36861117

RESUMO

Purpose: Co-morbidities are common in chronic obstructive pulmonary disease (COPD) and are associated with increased morbidity and mortality. The aim of the present study was to explore the prevalence of several comorbid conditions in severe COPD, and to investigate and compare their associations with long-term mortality. Methods: In May 2011 to March 2012, 241 patients with COPD stage 3 or 4 were included in the study. Information was collected on sex, age, smoking history, weight and height, current pharmacological treatment, number of exacerbations the recent year and comorbid conditions. At December 31st, 2019, mortality data (all-cause and cause specific) were collected from the National Cause of Death Register. Data were analyzed using Cox-regression analysis with gender, age, previously established predictors of mortality and comorbid conditions as independent variables, and all-cause mortality and cardiac and respiratory mortality, respectively, as dependent variables. Results: Out of 241 patients, 155 (64%) were deceased at the end of the study period; 103 patients (66%) died of respiratory disease and 25 (16%) of cardiovascular disease. Impaired kidney function was the only comorbid condition independently associated with increased all-cause mortality (HR (95% CI) 3.41 (1.47-7.93) p=0.004) and respiratory mortality (HR (95%CI) 4.63 (1.61 to 13.4), p = 0.005). In addition, age ≥70, BMI <22 and lower FEV1 expressed as %predicted were significantly associated with increased all-cause and respiratory mortality. Conclusion: In addition to the risk factors high age, low BMI and poor lung function; impaired kidney function appears to be an important risk factor for mortality in the long term, which should be taken into account in the medical care of patients with severe COPD.

7.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36918039

RESUMO

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Assuntos
Asma , Escarro , Humanos , Escarro/metabolismo , Lipidômica , Proteômica/métodos , Estudos Transversais , Estudos Prospectivos , Lipídeos
8.
J Asthma Allergy ; 15: 1429-1439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248343

RESUMO

Background: Risk factors for severe asthma are not well described. The aim was to identify clinical characteristics and risk factors at study entry that are associated with severe asthma at follow-up in a long-term prospective population-based cohort study of adults with asthma. Methods: Between 1986 and 2001, 2055 adults with asthma were identified by clinical examinations of population-based samples in northern Sweden. During 2012-2014, n = 1006 (71% of invited) were still alive, residing in the study area and participated in a follow-up, of which 40 were identified as having severe asthma according to ERS/ATS, 131 according to GINA, while 875 had other asthma. The mean follow-up time was 18.7 years. Results: Obesity at study entry and adult-onset asthma were associated with severe asthma at follow-up. While severe asthma was more common in those with adult-onset asthma in both men and women, the association with obesity was observed in women only. Sensitization to mites and moulds, but not to other allergens, as well as NSAID-related respiratory symptoms was more common in severe asthma than in other asthma. Participants with severe asthma at follow-up had lower FEV1, more pronounced FEV1 reversibility, and more wheeze, dyspnea and nighttime awakenings already at study entry than those with other asthma. Conclusion: Adult-onset asthma is an important risk factor for development of severe asthma in adults, and obesity increased the risk among women. The high burden of respiratory symptoms already at study entry also indicate long-term associations with development of severe asthma.

9.
Eur J Appl Physiol ; 122(12): 2533-2544, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053365

RESUMO

PURPOSE: Exposure to cold air may harm the airways. It is unclear to what extent heavy exercise adds to the cold-induced effects on peripheral airways, airway epithelium, and systemic immunity among healthy individuals. We investigated acute effects of heavy exercise in sub-zero temperatures on the healthy airways. METHODS: Twenty-nine healthy individuals underwent whole body exposures to cold air in an environmental chamber at - 15 °C for 50 min on two occasions; a 35-min exercise protocol consisting of a 5-min warm-up followed by 2 × 15 min of running at 85% of VO2max vs. 50 min at rest. Lung function was measured by impulse oscillometry (IOS) and spirometry before and immediately after exposures. CC16 in plasma and urine, and cytokines in plasma were measured before and 60 min after exposures. Symptoms were surveyed pre-, during and post-trials. RESULTS: FEV1 decreased after rest (- 0.10 ± 0.03 L, p < 0.001) and after exercise (- 0.06 ± 0.02 L, p = 0.012), with no difference between trials. Exercise in - 15 °C induced greater increases in lung reactance (X5; p = 0.023), plasma CC16 (p < 0.001) as well as plasma IL-8 (p < 0.001), compared to rest. Exercise induced more intense symptoms from the lower airways, whereas rest gave rise to more general symptoms. CONCLUSION: Heavy exercise during cold air exposure at - 15 °C induced signs of an airway constriction to a similar extent as rest in the same environment. However, biochemical signs of airway epithelial stress, cytokine responses, and symptoms from the lower airways were more pronounced after the exercise trial.


Assuntos
Exercício Físico , Corrida , Humanos , Constrição , Exercício Físico/fisiologia , Espirometria , Temperatura Baixa
10.
Clin Transl Med ; 12(4): e816, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474304

RESUMO

BACKGROUND: Exacerbation-prone asthma is a feature of severe disease. However, the basis for its persistency remains unclear. OBJECTIVES: To determine the clinical and transcriptomic features of frequent exacerbators (FEs) and persistent FEs (PFEs) in the U-BIOPRED cohort. METHODS: We compared features of FE (≥2 exacerbations in past year) to infrequent exacerbators (IE, <2 exacerbations) and of PFE with repeat ≥2 exacerbations during the following year to persistent IE (PIE). Transcriptomic data in blood, bronchial and nasal epithelial brushings, bronchial biopsies and sputum cells were analysed by gene set variation analysis for 103 gene signatures. RESULTS: Of 317 patients, 62.4% had FE, of whom 63.6% had PFE, while 37.6% had IE, of whom 61.3% had PIE. Using multivariate analysis, FE was associated with short-acting beta-agonist use, sinusitis and daily oral corticosteroid use, while PFE was associated with eczema, short-acting beta-agonist use and asthma control index. CEA cell adhesion molecule 5 (CEACAM5) was the only differentially expressed transcript in bronchial biopsies between PE and IE. There were no differentially expressed genes in the other four compartments. There were higher expression scores for type 2, T-helper type-17 and type 1 pathway signatures together with those associated with viral infections in bronchial biopsies from FE compared to IE, while there were higher expression scores of type 2, type 1 and steroid insensitivity pathway signatures in bronchial biopsies of PFE compared to PIE. CONCLUSION: The FE group and its PFE subgroup are associated with poor asthma control while expressing higher type 1 and type 2 activation pathways compared to IE and PIE, respectively.


Assuntos
Asma , Transcriptoma , Asma/genética , Asma/metabolismo , Asma/patologia , Brônquios/patologia , Estudos de Coortes , Humanos , Escarro/metabolismo , Transcriptoma/genética
11.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737220

RESUMO

RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-ß and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.


Assuntos
Asma , Qualidade de Vida , Proteínas Sanguíneas , Humanos , Inflamação/metabolismo , Proteômica , Índice de Gravidade de Doença , Esteroides/uso terapêutico
13.
Part Fibre Toxicol ; 18(1): 22, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127003

RESUMO

BACKGROUND: Air pollution derived from combustion is associated with considerable cardiorespiratory morbidity and mortality in addition to environmental effects. Replacing petrodiesel with biodiesel may have ecological benefits, but impacts on human health remain unquantified. The objective was to compare acute cardiovascular effects of blended and pure biodiesel exhaust exposure against known adverse effects of petrodiesel exhaust (PDE) exposure in human subjects. In two randomized controlled double-blind crossover studies, healthy volunteers were exposed to PDE or biodiesel exhaust for one hour. In study one, 16 subjects were exposed, on separate occasions, to PDE and 30% rapeseed methyl ester biodiesel blend (RME30) exhaust, aiming at PM10 300 µg/m3. In study two, 19 male subjects were separately exposed to PDE and exhaust from a 100% RME fuel (RME100) using similar engine load and exhaust dilution. Generated exhaust was analyzed for physicochemical composition and oxidative potential. Following exposure, vascular endothelial function was assessed using forearm venous occlusion plethysmography and ex vivo thrombus formation was assessed using a Badimon chamber model of acute arterial injury. Biomarkers of inflammation, platelet activation and fibrinolysis were measured in the blood. RESULTS: In study 1, PDE and RME30 exposures were at comparable PM levels (314 ± 27 µg/m3; (PM10 ± SD) and 309 ± 30 µg/m3 respectively), whereas in study 2, the PDE exposure concentrations remained similar (310 ± 34 µg/m3), but RME100 levels were lower in PM (165 ± 16 µg/m3) and PAHs, but higher in particle number concentration. Compared to PDE, PM from RME had less oxidative potential. Forearm infusion of the vasodilators acetylcholine, bradykinin, sodium nitroprusside and verapamil resulted in dose-dependent increases in blood flow after all exposures. Vasodilatation and ex vivo thrombus formation were similar following exposure to exhaust from petrodiesel and the two biodiesel formulations (RME30 and RME100). There were no significant differences in blood biomarkers or exhaled nitric oxide levels between exposures. CONCLUSIONS: Despite differences in PM composition and particle reactivity, controlled exposure to biodiesel exhaust was associated with similar cardiovascular effects to PDE. We suggest that the potential adverse health effects of biodiesel fuel emissions should be taken into account when evaluating future fuel policies. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01337882 /NCT01883466. Date of first enrollment March 11, 2011, registered April 19, 2011, i.e. retrospectively registered.


Assuntos
Poluição do Ar , Biocombustíveis , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Biocombustíveis/toxicidade , Estudos Cross-Over , Feminino , Humanos , Masculino , Vasodilatação , Emissões de Veículos/análise
14.
J Am Heart Assoc ; 10(10): e018448, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33942621

RESUMO

Background Diesel exhaust (DE) emissions are a major contributor to ambient air pollution and are strongly associated with cardiovascular morbidity and mortality. Exposure to traffic-related particulate matter is linked with acute adverse cardiovascular events; however, the mechanisms are not fully understood. We examined the role of the autonomic nervous system during exposure to DE that has previously only been indirectly investigated. Methods and Results Using microneurography, we measured muscle sympathetic nerve activity (MSNA) directly in the peroneal nerve of 16 healthy individuals. MSNA, heart rate, and respiration were recorded while subjects rested breathing filtered air, filtered air with an exposure mask, and standardized diluted DE (300 µg/m3) through the exposure mask. Heart rate variability was assessed from an ECG. DE inhalation rapidly causes an increase in number of MSNA bursts as well as the size of bursts within 10 minutes, peaking by 30 minutes (P<0.001), compared with baseline filtered air with an exposure mask. No significant changes occurred in heart rate variability indices during DE exposure; however, MSNA frequency correlated negatively with total power (r2=0.294, P=0.03) and low frequency (r2=0.258, P=0.045). Heart rate correlated positively with MSNA frequency (r2=0.268, P=0.04) and the change in percentage of larger bursts (burst amplitude, height >50% of the maximum burst) from filtered air with an exposure mask (r2=0.368, P=0.013). Conclusions Our study provides direct evidence for the rapid modulation of the autonomic nervous system after exposure to DE, with an increase in MSNA. The quick increase in sympathetic outflow may explain the strong epidemiological data associating traffic-related particulate matter to acute adverse cardiovascular events such as myocardial infarction. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02892279.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Doenças Cardiovasculares/etiologia , Contração Muscular/fisiologia , Músculo Esquelético/inervação , Saúde Pública , Sistema Nervoso Simpático/fisiopatologia , Emissões de Veículos , Adulto , Doenças Cardiovasculares/epidemiologia , Frequência Cardíaca/fisiologia , Humanos , Incidência , Masculino , Músculo Esquelético/fisiopatologia , População Urbana , Adulto Jovem
15.
Int J Circumpolar Health ; 80(1): 1897213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33685367

RESUMO

Exposure to a cold climate is associated with an increased morbidity and mortality, but the specific mechanisms are largely unknown. People with cardiopulmonary disease and winter endurance athletes are particularly vulnerable. This study aimed to map multiple domains of airway responses to exercise in subzero temperature in healthy individuals.Thirty-one healthy subjects underwent whole-body exposures for 50 minutes on two occasions in an environmental chamber with intermittent moderate-intensity exercise in +10 °C and -10 °C. Lung function, plasma/urine CC16 , and symptoms were investigated before and after exposures.Compared to baseline, exercise in -10 °C decreased FEV1 (p=0.002), FEV1/FVC (p<0.001), and increased R20Hz (p=0.016), with no differences between exposures. Reactance increased after +10 °C (p=0.005), which differed (p=0.042) from a blunted response after exercise in -10 °C. Plasma CC16 increased significantly within exposures, without differences between exposures. Exercise in -10 °C elicited more intense symptoms from the upper airways, compared to +10 °C. Symptoms from the lower airways were few and mild. Short-duration moderate-intensity exercise in -10 °C induces mild symptoms from the lower airways, no lung function decrements or enhanced leakage of biomarkers of airway epithelial injury, and no peripheral bronchodilatation, compared to exercise in +10 °C.


Assuntos
Atletas , Exercício Físico , Humanos , Testes de Função Respiratória , Temperatura
16.
Artigo em Inglês | MEDLINE | ID: mdl-35010571

RESUMO

The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Encéfalo , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
18.
World Allergy Organ J ; 13(3): 100110, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32206161

RESUMO

BACKGROUND: The relationship between lung function decline and eosinophils and neutrophils has important therapeutic implications among asthmatics, but it has rarely been studied in large cohort studies. OBJECTIVE: The aim is to study the relationship between blood eosinophils and neutrophils and FEV1 decline in a long-term follow-up of a population-based adult asthma cohort. METHODS: In 2012-2014, an adult asthma cohort was invited to a follow-up including spirometry, blood sampling, and structured interviews, and n = 892 participated (55% women, mean age 59 y, 32-92 y). Blood eosinophils, neutrophils and FEV 1 decline were analyzed both as continuous variables and divided into categories with different cut-offs. Regression models adjusted for smoking, exposure to vapors, gas, dust, or fumes (VGDF), use of inhaled and oral corticosteroids, and other possible confounders were utilized to analyze the relationship between eosinophils and neutrophils at follow-up and FEV1 decline. RESULTS: The mean follow-up time was 18 years, and the mean FEV 1 decline was 27 ml/year. The annual FEV1 decline was related to higher levels of both blood eosinophils and neutrophils at follow-up, but only the association with eosinophils remained when adjusted for confounders. Further, the association between FEV1 decline and eosinophils was stronger among those using ICS. With EOS <0.3 × 109/L as reference, a more rapid decline in FEV1 was independently related to EOS ≥0.4 × 109/L in adjusted analyses. CONCLUSIONS AND CLINICAL RELEVANCE: Besides emphasizing the importance of smoking cessation and reduction of other harmful exposures, our real-world results indicate that there is an independent relationship between blood eosinophils and FEV1 decline among adults with asthma.

20.
Metallomics ; 12(3): 371-386, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31915771

RESUMO

Studies have emphasised the importance of combustion-derived particles in eliciting adverse health effects, especially those produced by diesel vehicles. In contrast, few investigations have explored the potential toxicity of particles derived from tyre and brake wear, despite their significant contributions to total roadside particulate mass. The objective of this study was to compare the relative toxicity of compositionally distinct brake abrasion dust (BAD) and diesel exhaust particles (DEP) in a cellular model that is relevant to human airways. Although BAD contained considerably more metals/metalloids than DEP (as determined by inductively coupled plasma mass spectrometry) similar toxicological profiles were observed in U937 monocyte-derived macrophages following 24 h exposures to 4-25 µg ml-1 doses of either particle type. Responses to the particles were characterised by dose-dependent decreases in mitochondrial depolarisation (p ≤ 0.001), increased secretion of IL-8, IL-10 and TNF-α (p ≤ 0.05 to p ≤ 0.001) and decreased phagocytosis of S. aureus (p ≤ 0.001). This phagocytic deficit recovered, and the inflammatory response resolved when challenged cells were incubated for a further 24 h in particle-free media. These responses were abrogated by metal chelation using desferroxamine. At minimally cytotoxic doses both DEP and BAD perturbed bacterial clearance and promoted inflammatory responses in U937 cells with similar potency. These data emphasise the requirement to consider contributions of abrasion particles to traffic-related clinical health effects.


Assuntos
Poluentes Atmosféricos/imunologia , Poeira/imunologia , Inflamação/etiologia , Macrófagos/imunologia , Fagocitose , Poluentes Atmosféricos/efeitos adversos , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/imunologia , Interleucina-8/imunologia , Macrófagos/patologia , Tamanho da Partícula , Staphylococcus aureus/imunologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...