Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Scand J Gastroenterol ; : 1-5, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738865

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease (IBD) is increasing. The prevalence of overweight and obesity is increasing in parallel with IBD and could contribute to IBD development. The aim of this study was to assess the relationship between weight change and the risk for IBD. METHODS: Data gathered from 55,896 adult participants in the three first population-based Trøndelag Health Studies (HUNT1-3), Norway, performed in 1984-2008 was used. The exposure was change in body mass index between two HUNT studies. The outcome was a new IBD diagnosis recorded during a ten-year follow-up period after the exposure assessment. The risk of IBD by weight change was assessed by Cox regression analyses reporting hazard ratios (HRs) and 95% confidence intervals (CIs), adjusted for sex, age, and smoking status. RESULTS: There were 334 new cases of ulcerative colitis (UC) and 54 of Crohn's disease (CD). Weight loss decreased the risk of a new UC diagnosis by 38% (adjusted HR 0.62, 95% CI 0.39-0.97) and seemed to double the risk of getting a new CD diagnosis (adjusted HR 2.01, 95% CI 0.91-4.46). Weight gain was not associated with a new diagnosis of neither UC (adjusted HR 1.00, 95% CI 0.78-1.26) nor CD (adjusted HR 1.08, 95% CI 0.56-2.08). CONCLUSION: In this study, weight loss was associated with decreased risk of UC. However, no associations were seen between weight gain and the risk of UC or CD, suggesting that the increasing weight in the general population cannot explain the increasing incidence of IBD.

2.
Inflamm Bowel Dis ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38103028

RESUMO

BACKGROUND: There is growing evidence of the role of the mycobiome in inflammatory bowel disease (IBD). Variations within phenotypes and activity and with prognosis have been poorly studied. METHODS: A total of 111 individuals were prospectively enrolled: 89 IBD patients (52 ulcerative colitis and 37 Crohn's disease [CD]) and 22 healthy individuals. Disease characteristics were collected and a fecal calprotectin >100 µg/mg was considered indicative of activity. A subset of patients was followed for 6 ± 2 years. Disease course was designated as either complicated or uncomplicated based on the need of intensified medication and/or surgery. ITS sequencing was performed targeting the ITS1 region. RESULTS: We found lower Ascomycota/Basidiomycota ratio in IBD. Patients showed a marked increase in Candida dublinensis and Ca albicans and were depleted of Aspergillus rubrobrunneus and Penicillium brevicompactum (P ≤ .001) Saccharomyces was predominant in total colitis and Penicillium in proctitis. Several Penicillium species were depleted in total colitis vs proctitis. Ileal CD patients were enriched in Debaromyces hansenii and depleted of Ca tropicalis (P ≤ .001). Ca albicans was overrepresented in inflammatory (B1) vs fibrostenosing (B2) CD. Ca dublinensis was more abundant in active patients and correlated positively with fecal calprotectin and neutrophil gelatinase-associated lipocalin, while S pastorianus correlated inversely with activity. Ca sake was associated with complicated disease and increased abundance of Cryptococcus carnescens with the need for surgery in CD. CONCLUSIONS: This study shows important differences in the mycobiome in IBD and within phenotypes. Selected fungal species were associated with complicated disease and the need of surgery in CD. This work adds to our understanding of the role of fungi in IBD, with potential clinical implications.


This study compares the fungal microbiome (mycobiome) between patients with inflammatory bowel disease (IBD) (ulcerative colitis and Crohn's disease [CD]) and control individuals in a well-characterized population in Norway. We show important differences in the mycobiome of IBD patients and between ulcerative colitis and CD. Our study also demonstrates variations in the fungal composition in the different disease phenotypes (regarding disease location or behavior of disease). Last, we show that selected fungal species are associated with the activity of the disease, the future development of complications and the need of surgery in CD. This work adds to our understanding of the role of fungi in IBD and has potential clinical implications.

3.
Front Immunol ; 14: 1097383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911731

RESUMO

There are many unanswered questions regarding responses to proinflammatory signals in intestinal epithelial cells (IECs). For example, chemokines secreted by IECs upon external stimuli play multifunctional roles in both homeostasis and during inflammation. Several chemokines are upregulated during active inflammatory bowel disease (IBD), which is associated with an increased influx of immune cells into the gut mucosa. Therefore, studies on how chemokines are regulated in the intestinal epithelium may identify putative treatment targets in IBD. More recently, patient-derived ex vivo models such as intestinal organoids have facilitated molecular analysis of epithelial alterations in IBD patients own cells. Here, we describe refined experimental protocols and methods for the generation and maintenance of IBD patient-derived colonic organoids (colonoids) culture. We also give detailed description of medium, and supplements needed for colonoid establishment, growth, and differentiation, including production of Wnt-3A and Rspondin1 enriched media. Further, we present protocols for RNA and protein isolation from human colonoids, and subsequent gene expression analysis and Western blotting for e.g., signal transduction studies. We also describe how to process colonoids for chemokine protein expression analysis such as immunostaining, confocal imaging, and detection of secreted chemokines by e.g., enzyme-linked immunosorbent assay (ELISA). As proof of principle, we give examples of how the chemoattractant CCL20 can be regulated and expressed in colonoids derived from IBD-patients and healthy controls upon ligands-driven inflammation.


Assuntos
Colo , Doenças Inflamatórias Intestinais , Humanos , Colo/metabolismo , Células Epiteliais/metabolismo , Organoides , Inflamação/metabolismo
4.
Front Immunol ; 14: 1095812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793710

RESUMO

Background: The epithelium in the colonic mucosa is implicated in the pathophysiology of various diseases, including inflammatory bowel diseases and colorectal cancer. Intestinal epithelial organoids from the colon (colonoids) can be used for disease modeling and personalized drug screening. Colonoids are usually cultured at 18-21% oxygen without accounting for the physiological hypoxia in the colonic epithelium (3% to <1% oxygen). We hypothesize that recapitulating the in vivo physiological oxygen environment (i.e., physioxia) will enhance the translational value of colonoids as pre-clinical models. Here we evaluate whether human colonoids can be established and cultured in physioxia and compare growth, differentiation, and immunological responses at 2% and 20% oxygen. Methods: Growth from single cells to differentiated colonoids was monitored by brightfield images and evaluated with a linear mixed model. Cell composition was identified by immunofluorescence staining of cell markers and single-cell RNA-sequencing (scRNA-seq). Enrichment analysis was used to identify transcriptomic differences within cell populations. Pro-inflammatory stimuli induced chemokines and Neutrophil gelatinase-associated lipocalin (NGAL) release were analyzed by Multiplex profiling and ELISA. Direct response to a lower oxygen level was analyzed by enrichment analysis of bulk RNA sequencing data. Results: Colonoids established in a 2% oxygen environment acquired a significantly larger cell mass compared to a 20% oxygen environment. No differences in expression of cell markers for cells with proliferation potential (KI67 positive), goblet cells (MUC2 positive), absorptive cells (MUC2 negative, CK20 positive) and enteroendocrine cells (CGA positive) were found between colonoids cultured in 2% and 20% oxygen. However, the scRNA-seq analysis identified differences in the transcriptome within stem-, progenitor- and differentiated cell clusters. Both colonoids grown at 2% and 20% oxygen secreted CXCL2, CXCL5, CXCL10, CXCL12, CX3CL1 and CCL25, and NGAL upon TNF + poly(I:C) treatment, but there appeared to be a tendency towards lower pro-inflammatory response in 2% oxygen. Reducing the oxygen environment from 20% to 2% in differentiated colonoids altered the expression of genes related to differentiation, metabolism, mucus lining, and immune networks. Conclusions: Our results suggest that colonoids studies can and should be performed in physioxia when the resemblance to in vivo conditions is important.


Assuntos
Hipóxia , Organoides , Humanos , Lipocalina-2/genética , Diferenciação Celular , Oxigênio
5.
J Pathol Clin Res ; 9(1): 18-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416283

RESUMO

Colon mucosae of ulcerative colitis (UC) and Crohn's disease (CD) display differences in the number and distribution of immune cells that are difficult to assess by eye. Deep learning-based analysis on whole slide images (WSIs) allows extraction of complex quantitative data that can be used to uncover different inflammatory patterns. We aimed to explore the distribution of CD3 and γδ T cells in colon mucosal compartments in histologically inactive and active inflammatory bowel disease. By deep learning-based segmentation and cell detection on WSIs from a well-defined cohort of CD (n = 37), UC (n = 58), and healthy controls (HCs, n = 33), we quantified CD3 and γδ T cells within and beneath the epithelium and in lamina propria in proximal and distal colon mucosa, defined by the Nancy histological index. We found that inactive CD had significantly fewer intraepithelial γδ T cells than inactive UC, but higher total number of CD3 cells in all compartments than UC and HCs. Disease activity was associated with a massive loss of intraepithelial γδ T cells in UC, but not in CD. The total intraepithelial number of CD3 cells remained constant regardless of disease activity in both CD and UC. There were more mucosal CD3 and γδ T cells in proximal versus distal colon. Oral corticosteroids had an impact on γδ T cell numbers, while age, gender, and disease duration did not. Relative abundance of γδ T cells in mucosa and blood did not correlate. This study reveals significant differences in the total number of CD3 and γδ T cells in particularly the epithelial area between CD, UC, and HCs, and demonstrates useful application of deep segmentation to quantify cells in mucosal compartments.


Assuntos
Doença de Crohn , Aprendizado Profundo , Humanos
6.
Front Med (Lausanne) ; 9: 868812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237548

RESUMO

Introduction: Fungal microbiota's involvement in the pathogenesis of Crohn's disease (CD) is incompletely understood. The terminal ileum is a predilection site both for primary involvement and recurrences of CD. We, therefore, assessed the mucosa-associated mycobiota in the inflamed and non-inflamed ileum in patients with CD. Methods: The mucosa-associated mycobiota was assessed by ITS2 sequencing in a total of 168 biopsies sampled 5 and 15 cm proximal of the ileocecal valve or ileocolic anastomosis in 44 CD patients and 40 healthy controls (HC). CD patients with terminal ileitis, with endoscopic inflammation at 5 cm and normal mucosa at 15 cm and no history of upper CD involvement, were analyzed separately. The need for additional CD treatment the year following biopsy collection was recorded. Results: CD patients had reduced mycobiota evenness, increased Basidiomycota/Ascomycota ratio, and reduced abundance of Chytridiomycota compared to HC. The mycobiota of CD patients were characterized by an expansion of Malassezia and a depletion of Saccharomyces, along with increased abundances of Candida albicans and Malassezia restricta. Malassezia was associated with the need for treatment escalation during follow-up. Current anti-TNF treatment was associated with lower abundances of Basidiomycota. The alpha diversity of the inflamed and proximal non-inflamed mucosa within the same patients was similar. However, the inflamed mucosa had a more dysbiotic composition with increased abundances of Candida sake and reduced abundances of Exophiala equina and Debaryomyces hansenii. Conclusions: The ileal mucosa-associated mycobiota in CD patients is altered compared to HC. The mycobiota in the inflamed and proximal non-inflamed ileum within the same patients harbor structural differences which may play a role in the CD pathogenesis. Increased abundance of Malassezia was associated with an unfavorable disease course.

7.
Front Immunol ; 13: 882277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655783

RESUMO

Major Histocompatibility Complex (MHC)-I and -II genes are upregulated in intestinal epithelial cells (IECs) during active inflammatory bowel diseases (IBD), but little is known about how IBD-relevant pro-inflammatory signals and IBD drugs can regulate their expression. We have previously shown that the synthetic analog of double-stranded RNA (dsRNA) Polyinosinic:polycytidylic acid (Poly(I:C)), induces interferon stimulated genes (ISGs) in colon organoids (colonoids). These ISGs may be involved in the induction of antigen presentation. In the present study, we applied colonoids derived from non-IBD controls and ulcerative colitis patients to identify induction and effects of IBD-drugs on antigen presentation in IECs in the context of Tumor Necrosis Factor (TNF)-driven inflammation. By RNA sequencing, we show that a combination of TNF and Poly(I:C) strongly induced antigen-presentation gene signatures in colonoids, including expression of MHC-II genes. MHC-I and -II protein expression was confirmed by immunoblotting and immunofluorescence. TNF+Poly(I:C)-dependent upregulation of MHC-II expression was associated with increased expression of Janus Kinases JAK1/2 as well as increased activation of transcription factor Signal transducer and activator of transcription 1 (STAT1). Accordingly, pre-treatment of colonoids with IBD-approved pan-Janus Kinase (JAK) inhibitor Tofacitinib led to the downregulation of TNF+Poly(I:C)-dependent MHC-II expression associated with the abrogation of STAT1 activation. Pre-treatment with corticosteroid Budesonide, commonly used in IBD, did not alter MHC-II expression. Collectively, our results identify a regulatory role for IBD-relevant pro-inflammatory signals on MHC-II expression that is influenced by Tofacitinib.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores de Janus Quinases , Colo/patologia , Epitélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Complexo Principal de Histocompatibilidade , Piperidinas , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Pirimidinas , Fator de Necrose Tumoral alfa/uso terapêutico
8.
PLoS One ; 17(3): e0265189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275975

RESUMO

In recent years it has become apparent that the epithelium is highly involved in inflammatory bowel disease (IBD) pathophysiology. The majority of gene expression studies of IBD are generated from heterogeneous biopsies, providing no distinction between immune cells, the epithelium and other mucosal cells. By using laser capture microdissection (LCM) coupled with RNA sequencing, we aimed to characterize the expressional changes of the isolated colonic epithelial monolayer from ulcerative colitis (UC) and Crohn's disease (CD) patients compared to healthy controls (HC). The analysis identified 3706 genes as differentially expressed between active IBD epithelium and HC. Weighted gene co-expression network analysis was used to stratify genes into modules, which were subsequently characterized using enrichment analysis. Our data show a distinct upregulation of the antigen presentation machinery during inflammation, including major histocompatibility complex class II molecules (e.g. HLA-DPA1, HLA-DPB1, HLA-DRA) and key transcription factors/activators (STAT1, IRF1, CIITA). We also see an epithelial downregulation of retinoic acid-responsive nuclear receptors (RARA, RARB, RXRA), but upregulation of retinoid-metabolizing enzymes (RDH11, ALDH1A2, ALDH1A3), which together suggest a perturbation of epithelial vitamin A signaling during active IBD. Lastly, we identified a cluster of stress-related genes, including activator protein 1 components JUNB and ATF3, as significantly upregulated in active UC but not in CD, revealing an interesting aspect of IBD heterogeneity. The results represent a unique resource for enhanced understanding of epithelial involvement in IBD inflammation and is a valuable tool for further studies on these processes.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Colite Ulcerativa/metabolismo , Colo/patologia , Doença de Crohn/patologia , Expressão Gênica , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
9.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639191

RESUMO

Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.


Assuntos
Colite Ulcerativa/patologia , Interações entre Hospedeiro e Microrganismos , Imunidade Inata/imunologia , Animais , Colite Ulcerativa/etiologia , Humanos
10.
J Gastroenterol ; 56(10): 914-927, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34414506

RESUMO

BACKGROUND: Collagenous colitis (CC) is an inflammatory bowel disease where chronic diarrhoea is the main symptom. Diagnostic markers distinguishing between CC and other causes of chronic diarrhoea remain elusive. This study explores neutrophil gelatinase-associated lipocalin (NGAL) and its mRNA lipocalin2 (LCN2) as histological and faecal disease markers in CC. METHODS: NGAL/LCN2 were studied in colonic biopsies from CC patients before and during budesonide treatment using RNA sequencing (n = 9/group), in situ hybridization (ISH) (n = 13-22/group) and immunohistochemistry (IHC) (n = 14-25/group). Faecal samples from CC (n = 3-28/group), irritable bowel syndrome diarrhoea (IBS-D) (n = 14) and healthy controls (HC) (n = 15) were assayed for NGAL and calprotectin. RESULTS: NGAL/LCN2 protein and mRNA expression were upregulated in active CC vs HC, and vs paired samples of treated CC in clinical remission. IHC and ISH localized increased NGAL/LCN2 mainly to epithelium of active CC, compared to almost absence in HC and treated CC. In contrast, calprotectin was solely expressed in immune cells. Despite great individual differences, faecal NGAL was significantly increased in active CC compared to HC, IBS-D and treated CC and had high test sensitivity. Faecal calprotectin levels were variably increased in active CC, but the values remained below usual clinical cut-offs. CONCLUSION: NGAL/LCN2 is upregulated in the epithelium of active CC and reduced during budesonide-induced clinical remission to the level of HC and IBD-S. This was reflected in NGAL faecal concentrations. We propose NGAL as an IHC marker for disease activity in CC and a potential faecal biomarker discriminating CC from HC and IBS-D.


Assuntos
Biomarcadores/análise , Colite Colagenosa/diagnóstico , Lipocalina-2/análise , Adulto , China/epidemiologia , Colite Colagenosa/sangue , Colite Colagenosa/epidemiologia , Ensaio de Imunoadsorção Enzimática/métodos , Fezes/enzimologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Front Pharmacol ; 12: 679741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054553

RESUMO

Treatment of inflammatory bowel disease (IBD) is challenging, with a series of available drugs each helping only a fraction of patients. Patients may face time-consuming drug trials while the disease is active, thus there is an unmet need for biomarkers and assays to predict drug effect. It is well known that the intestinal epithelium is an important factor in disease pathogenesis, exhibiting physical, biochemical and immunologic driven barrier dysfunctions. One promising test system to study effects of existing or emerging IBD treatments targeting intestinal epithelial cells (IECs) is intestinal organoids ("mini-guts"). However, the fact that healthy intestinal epithelium is in a physiologically hypoxic state has largely been neglected, and studies with intestinal organoids are mainly performed at oxygen concentration of 20%. We hypothesized that lowering the incubator oxygen level from 20% to 2% would recapitulate better the in vivo physiological environment of colonic epithelial cells and enhance the translational value of intestinal organoids as a drug testing platform. In the present study we examine the effects of the key IBD cytokines and drug targets TNF/IL17 on human colonic organoids (colonoids) under atmospheric (20%) or reduced (2%) O2. We show that colonoids derived from both healthy controls and IBD-patients are viable and responsive to IBD-relevant cytokines at 2% oxygen. Because chemokine release is one of the important immunoregulatory traits of the epithelium that may be fine-tuned by IBD-drugs, we also examined chemokine expression and release at different oxygen concentrations. We show that chemokine responses to TNF/IL17 in organoids display similarities to inflamed epithelium in IBD-patients. However, inflammation-associated genes induced by TNF/IL17 were attenuated at low oxygen concentration. We detected substantial oxygen-dependent differences in gene expression in untreated as well as TNF/IL17 treated colonoids in all donors. Further, for some of the IBD-relevant cytokines differences between colonoids from healthy controls and IBD patients were more pronounced in 2% O2 than 20% O2. Our results strongly indicate that an oxygen concentration similar to the in vivo epithelial cell environment is of essence in experimental pharmacology.

12.
Cell Mol Gastroenterol Hepatol ; 12(2): 665-687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930606

RESUMO

BACKGROUND AND AIMS: The pathophysiology of the inflammatory bowel disease collagenous colitis (CC) is poorly described. Our aim was to use RNA sequencing of mucosal samples from patients with active CC, CC in remission, refractory CC, ulcerative colitis (UC), and control subjects to gain insight into CC pathophysiology, identify genetic signatures linked to CC, and uncover potentially druggable disease pathways. METHODS: We performed whole transcriptome sequencing of CC samples from patients before and during treatment with the corticosteroid drug budesonide, CC steroid-refractory patients, UC patients, and healthy control subjects (n = 9-13). Bulk mucosa and laser-captured microdissected intestinal epithelial cell (IEC) gene expression were analyzed by gene set enrichment and gene set variation analyses to identify significant pathways and cells, respectively, altered in CC. Leading genes and cells were validated using reverse-transcription quantitative polymerase chain reaction or immunohistochemistry. RESULTS: We identified an activation of the adaptive immune response to bacteria and viruses in active CC that could be mediated by dendritic cells. Moreover, IECs display hyperproliferation and increased antigen presentation in active CC. Further analysis revealed that genes related to the immune response (DUOX2, PLA2G2A, CXCL9), DNA transcription (CTR9), protein processing (JOSD1, URI1), and ion transport (SLC9A3) remained dysregulated even after budesonide-induced remission. Budesonide-refractory CC patients fail to restore normal gene expression, and displayed a transcriptomic profile close to UC. CONCLUSIONS: Our study confirmed the implication of innate and adaptive immune responses in CC, governed by IECs and dendritic cells, respectively, and identified ongoing epithelial damage. Refractory CC could share pathomechanisms with UC.


Assuntos
Colite Colagenosa/genética , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Adolescente , Adulto , Idoso , Budesonida/farmacologia , Proliferação de Células/efeitos dos fármacos , Colite Colagenosa/imunologia , Colite Colagenosa/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colágeno/genética , Colágeno/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Células Estromais/metabolismo , Transcrição Gênica/efeitos dos fármacos , Adulto Jovem
13.
Inflamm Bowel Dis ; 27(1): 12-24, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32448900

RESUMO

BACKGROUND: Microbiota is most likely essential in the pathogenesis of Crohn's disease (CD). Fecal diversion after ileocecal resection (ICR) protects against CD recurrence, whereas infusion of fecal content triggers inflammation. After ICR, the majority of patients experience endoscopic recurrence in the neoterminal ileum, and the ileal microbiome is of particular interest. We have assessed the mucosa-associated microbiome in the inflamed and noninflamed ileum in patients with CD. METHODS: Mucosa-associated microbiome was assessed by 16S rRNA sequencing of biopsies sampled 5 and 15 cm orally of the ileocecal valve or ileocolic anastomosis. RESULTS: Fifty-one CD patients and forty healthy controls (HCs) were included in the study. Twenty CD patients had terminal ileitis, with endoscopic inflammation at 5 cm, normal mucosa at 15 cm, and no history of upper CD involvement. Crohn's disease patients (n = 51) had lower alpha diversity and separated clearly from HC on beta diversity plots. Twenty-three bacterial taxa were differentially represented in CD patients vs HC; among these, Tyzzerella 4 was profoundly overrepresented in CD. The microbiome in the inflamed and proximal noninflamed ileal mucosa did not differ according to alpha diversity or beta diversity. Additionally, no bacterial taxa were differentially represented. CONCLUSIONS: The microbiome is similar in the inflamed and proximal noninflamed ileal mucosa within the same patients. Our results support the concept of CD-specific microbiota alterations and demonstrate that neither ileal sublocation nor endoscopic inflammation influence the mucosa-associated microbiome.


Assuntos
Doença de Crohn/microbiologia , Microbioma Gastrointestinal/genética , Ileíte/microbiologia , Íleo/microbiologia , Mucosa Intestinal/microbiologia , Adolescente , Adulto , Biópsia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , RNA Ribossômico 16S/análise , Recidiva , Adulto Jovem
14.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G761-G768, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32967429

RESUMO

Serotonin is a highly conserved and ubiquitous signaling molecule involved in a vast variety of biological processes. A majority of serotonin is produced in the gastrointestinal epithelium, where it is suggested to act as a prominent regulatory molecule in the inflammatory bowel diseases (IBDs) Crohn's disease (CD) and ulcerative colitis (UC). Extracellular and circulating serotonin levels are thought to be elevated during intestinal inflammation, but the underlying mechanisms have been poorly understood. The data on human material are limited, contradictory, and in need of further investigation and substantiating. In this study, we show a potent and significant downregulation of the dominant serotonin reuptake transporter (SERT) mRNA (SLC6A4) in the epithelium from active CD ileitis, CD colitis, and UC colitis, compared with healthy controls. The mRNA of tryptophan hydroxylase 1, the rate-limiting enzyme in serotonin synthesis, was unregulated. Immunohistochemistry showed expression of the SERT protein in both the epithelium and the lamina propria and localized the downregulation to the epithelial monolayer. Laser capture microdissection followed by RNA sequencing confirmed downregulation of SLC6A4 in the epithelial monolayer during intestinal inflammation. Patient-derived colon epithelial cell lines (colonoids) incubated with the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) reduced SERT expression. In summary, these results show that intestinal inflammation potently reduces the expression of SERT in both CD and UC and that TNF-α alone is sufficient to induce a similar reduction in colonoids. The reduced serotonin reuptake capacity may contribute to the increased interstitial serotonin level associated with intestinal inflammation.NEW & NOTEWORTHY The serotonin reuptake transporter is potently reduced in inflamed areas of Crohn's ileitis, Crohn's colitis, and ulcerative colitis. The changes are localized to the intestinal epithelium and can be induced by TNF-α. The serotonin synthesis through tryptophan hydroxylase 1 is unchanged. This regulation is suggested as a mechanism underlying the increased extracellular serotonin levels associated with intestinal inflammation.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Mucosa Intestinal/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adolescente , Adulto , Idoso , Colo/citologia , Colo/patologia , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Triptofano Hidroxilase/biossíntese , Triptofano Hidroxilase/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
15.
J Crohns Colitis ; 14(7): 920-934, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32020185

RESUMO

BACKGROUND AND AIMS: Intestinal epithelial cells [IECs] secrete cytokines that recruit immune cells to the mucosa and regulate immune responses that drive inflammation in inflammatory bowel disease [IBD]. However, experiments in patient-derived IEC models are still scarce. Here, we aimed to investigate how innate immunity and IEC-specific pattern recognition receptor [PRR] signalling can be involved in an enhanced type I interferon [IFN] gene signature observed in colon epithelium of patients with active IBD, with a special focus on secreted ubiquitin-like protein ISG15. METHODS: Gene and protein expression in whole mucosa biopsies and in microdissected human colonic epithelial lining, in HT29 human intestinal epithelial cells and primary 3D colonoids treated with PRR-ligands and cytokines, were detected by transcriptomics, in situ hybridisation, immunohistochemistry, western blots, and enzyme-linked immunosorbent assay [ELISA]. Effects of IEC-secreted cytokines were examined in human peripheral blood mononuclear cells [PBMCs] by multiplex chemokine profiling and ELISA. RESULTS: The type I IFN gene signature in human mucosal biopsies was mimicked in Toll-like receptor TLR3 and to some extent tumour necrosis factor [TNF]-treated human IECs. In intestinal biopsies, ISG15 expression correlated with expression of the newly identified receptor for extracellular ISG15, LFA-1 integrin. ISG15 was expressed and secreted from HT29 cells and primary 3D colonoids through both JAK1-pSTAT-IRF9-dependent and independent pathways. In experiments using PBMCs, we show that ISG15 releases IBD-relevant proinflammatory cytokines such as CXCL1, CXCL5, CXCL8, CCL20, IL1, IL6, TNF, and IFNγ. CONCLUSIONS: ISG15 is secreted from primary IECs upon extracellular stimulation, and mucosal ISG15 emerges as an intriguing candidate for immunotherapy in IBD.


Assuntos
Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Interferon Tipo I/genética , Ubiquitinas/metabolismo , Biópsia , Antígeno CD11a/genética , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Citocinas/genética , Citocinas/farmacologia , Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interleucina-12/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Organoides/metabolismo , RNA Mensageiro/metabolismo , Receptores de Reconhecimento de Padrão , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinas/genética , Ubiquitinas/farmacologia , Regulação para Cima
16.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023822

RESUMO

Proton pump inhibitor use is associated with an increased risk of gastric cancer, which may be mediated by hypergastrinemia. Spasmolytic polypeptide-expression metaplasia (SPEM) has been proposed as a precursor of gastric cancer. We have examined the effects of the gastrin receptor antagonist netazepide (NTZ) or vehicle on the gastric corpus mucosa of H+/K+ATPase beta subunit knockout (KO) and wild-type (WT) mice. The gastric corpus was evaluated by histopathology, immunohistochemistry (IHC), in situ hybridization (ISH) and whole-genome gene expression analysis, focusing on markers of SPEM and neuroendocrine (NE) cells. KO mice had pronounced hypertrophy, intra- and submucosal cysts and extensive expression of SPEM and NE cell markers in the gastric corpus, but not in the antrum. Numerous SPEM-related genes were upregulated in KO mice compared to WT mice. NTZ reduced hypertrophia, cysts, inflammation and NE hyperplasia. However, NTZ neither affected expression of SPEM markers nor of SPEM-related genes. In conclusion, NTZ prevented mucosal hypertrophy, cyst formation and NE cell hyperplasia but did not affect SPEM. The presence of SPEM seems unrelated to the changes caused by hypergastrinemia in this animal model.


Assuntos
Benzodiazepinonas/administração & dosagem , Mucosa Gástrica/patologia , ATPase Trocadora de Hidrogênio-Potássio/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células Neuroendócrinas/patologia , Compostos de Fenilureia/administração & dosagem , Animais , Benzodiazepinonas/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Hiperplasia/prevenção & controle , Hibridização In Situ , Injeções Subcutâneas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Metaplasia , Camundongos , Camundongos Knockout , Compostos de Fenilureia/farmacologia , Sequenciamento do Exoma
17.
Aliment Pharmacol Ther ; 49(10): 1301-1313, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30895635

RESUMO

BACKGROUND: 5-aminosalicylic acid (5-ASA) is the first-line therapy for ulcerative colitis (UC). 5-ASA acts locally in the colonic mucosa by numerous proposed mechanisms, and is metabolised by N-acetyltransferase (NAT). Large variations in mucosal 5-ASA concentrations have been reported, but the underlying mechanisms are not understood. AIM: To study the relationship between 5-ASA concentration, 5-ASA formulation, NAT genotype and bacterial microbiome in patients with UC. METHODS: Patients with quiescent UC, using monotherapy of Mezavant (n = 18), Asacol (n = 14) or Pentasa (n = 10), 4.0-4.8 g/day were included. 5-ASA was measured in colonic mucosal biopsies and serum by ultra-high performance liquid chromatography. NAT genotypes were determined by Sanger sequencing. Bacterial microbiome was sequenced from faeces and mucosa by 16S rRNA sequencing using Illumina Miseq. RESULTS: Mezavant provided the highest mucosal 5-ASA levels (geometric mean 2.39 ng/mg), followed by Asacol (1.60 ng/mg, 33% lower, P = 0.50) and Pentasa (0.57 ng/mg, 76% lower, P = 0.033). Mucosal 5-ASA concentration was not associated with NAT genotype, but serum 5-ASA concentration and NAT1 genotype was associated (P = 0.044). Mucosal 5-ASA concentration was positively associated with mucosal bacterial diversity (P = 0.0005) and bacterial composition. High mucosal 5-ASA concentration was related to reduced abundance of pathogenic bacteria such as Proteobacteria, and increased abundance of several favourable bacteria such as Faecalibacterium. CONCLUSIONS: Mucosal 5-ASA concentration is positively associated with bacterial diversity and a mucosal bacterial composition that are perceived favourable in UC. Mezavant yielded higher mucosal 5-ASA concentrations than Pentasa. 5-ASA may have beneficial effects on the mucosal microbiome, and high concentrations possibly amend dysbiosis in UC.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Colite Ulcerativa , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mesalamina/farmacocinética , Adulto , Anti-Inflamatórios não Esteroides/uso terapêutico , Arilamina N-Acetiltransferase/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Composição de Medicamentos , Fezes/microbiologia , Feminino , Humanos , Isoenzimas/genética , Masculino , Mesalamina/uso terapêutico , Microbiota/efeitos dos fármacos , Microbiota/genética , Pessoa de Meia-Idade , Adulto Jovem
18.
J Pathol ; 248(3): 316-325, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30746716

RESUMO

Neutrophil gelatinase-associated lipocalin (NGAL), also known as Lipocalin 2, is an antimicrobial protein, encoded by the gene LCN2, strongly upregulated in inflammatory bowel disease (IBD) and a promising biomarker for IBD. Here we demonstrate that NGAL is highly expressed in all parts of pyloric metaplasia, also known as the ulcer-associated cell lineage (UACL), a metaplastic cell lineage suggested to play a role in wound healing in Crohn's disease (CD). We further show NGAL expression in regenerative intestinal crypts and in undifferentiated patient-derived colonoids. This indicates that NGAL is important in the tissue regeneration process. The remarkable overexpression of NGAL in UACL led us to explore the pathobiology of these cells by transcriptome-wide RNA sequencing. This study is, to our knowledge, the first to characterize the UACL at this level. Biopsies with UACL and inflamed non-UACL epithelium from the terminal ileum of CD patients and epithelium from healthy controls were laser capture microdissected for RNA sequencing. Among the 180 genes differentially expressed between UACL and control epithelium, the ten most-upregulated genes specific for UACL were MUC5AC, PGC, MUC6, MUC5B, LCN2, POU2AF1, MUC1, SDC3, IGFBP5, and SLC7A5. PDX1 was among the most upregulated in both UACL and inflamed non-UACL epithelium. Immunohistochemistry and iDisco 3D visualization was used to characterize UACL histo-morphologically, and to validate protein expression of 11 selected differentially expressed genes. Among these genes, LCN2, NOTCH2, PHLDA1, IGFBP5, SDC3, BPIFB1, and RCN1 have previously not been linked to UACL. Gene expression results were analyzed for functional implications using MetaCore, showing that differentially expressed genes are enriched for genes involved in cell migration and motility, and for biomarkers of gastrointestinal neoplasia. These results support a role for UACL as part of the reepithelialization process during and after destructive intestinal inflammation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Doença de Crohn/metabolismo , Lipocalina-2/metabolismo , Neutrófilos/metabolismo , Úlcera/metabolismo , Linhagem da Célula/fisiologia , Doença de Crohn/patologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Neutrófilos/patologia , Úlcera/patologia
19.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347808

RESUMO

The chemokine C-C motif ligand 20 (CCL20) is increased in the colonic mucosa during active inflammatory bowel disease (IBD) and can be found both in the epithelium and immune cells in the lamina propria. The present study investigated CCL20 and C-C motif Chemokine Receptor 6 (CCR6) in peripheral blood mononuclear cells (PBMCs) (n = 40) from IBD patients and healthy controls, to identify inductors of CCL20 release encountered in a local proinflammatory environment. CCL20 release from PBMCs was increased when activating TLR2/1 or NOD2, suggesting that CCL20 is part of a first line response to danger-associated molecular patterns also in immune cells. Overall, ulcerative colitis (UC) had a significantly stronger CCL20 release than Crohn's disease (CD) (+242%, p < 0.01), indicating that the CCL20-CCR6 axis may be more involved in UC. The CCL20 receptor CCR6 is essential for the chemotactic function of CCL20. UC with active inflammation had significantly decreased CCR6 expression and a reduction in CCR6⁺ cells in circulation, indicating chemoattraction of CCR6⁺ cells from circulation towards peripheral tissues. We further examined CCL20 induced release of cytokines from PBMCs. Stimulation with CCL20 combined with TNF increased IL-1ß release from PBMCs. By attracting additional immune cells, as well as inducing proinflammatory IL-1ß release from immune cells, CCL20 may protract the inflammatory response in ulcerative colitis.


Assuntos
Quimiocina CCL20/metabolismo , Colite Ulcerativa/sangue , Interleucina-1beta/metabolismo , Monócitos/metabolismo , Receptores CCR6/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Colite Ulcerativa/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores Toll-Like/metabolismo
20.
Therap Adv Gastroenterol ; 11: 1756284818775054, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872453

RESUMO

Stem cells are considered the origin of neoplasms in general, and malignant tumours in particular, and the stage at which the stem cells stop their differentiation determines the degree of malignancy. However, there is increasing evidence supporting an alternative paradigm. Tumours may develop by dedifferentiation from mature cells able to proliferate. Studies of gastric carcinogenesis demonstrate that mature neuroendocrine (NE) cells upon long-term overstimulation may develop through stages of hyperplasia, dysplasia, and rather benign tumours, into highly malignant carcinomas. Dedifferentiation of cells may change the histological appearance and impede the identification of the cellular origin, as seen with gastric carcinomas, which in many cases are dedifferentiated neuroendocrine tumours. Finding the cell of origin is important to identify risk factors for cancer, prevent tumour development, and tailor treatment. In the present review, we focus not only on gastric tumours, but also evaluate the role of neuroendocrine cells in tumourigenesis in two other foregut-derived organs, the lungs and the pancreas, as well as in the midgut-derived small intestine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...