Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Drug Metab Dispos ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697852

RESUMO

The IQ Transporter Working Group had a rare opportunity to analyse a cross-pharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of pre-incubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis. Lipophilicity was a frequent indicator of cross-transport inhibition (P-gp, BCRP, OATP1B and OCT1) with high molecular weight ({greater than or equal to}500 Da) also common for OATP1B and BCRP inhibitors. A high level of overlap in in vitro inhibition across transporters was identified for BCRP, OATP1B1 and MATE1 suggesting that prediction of DDIs for these transporters will be common. In contrast inhibition of OAT1 did not coincide with inhibition of any other transporter. Neutrals, bases, and compounds with intermediate-high lipophilicity tended to be P-gp and/or BCRP substrates whilst compounds with MW <500 Da tended to be OAT3 substrates. Interestingly the majority of in vitro inhibitors were not reported to be followed up with a clinical study by the submitting company, whilst those compounds identified as substrates generally were. Approaches to metabolite testing were generally found to be similar to parent testing with metabolites generally being equally or less potent than parent compounds. However, examples where metabolites inhibited transporters in vitro were identified supporting the regulatory requirement for in vitro testing of metabolites to enable integrated clinical DDI risk assessment. Significance Statement A diverse dataset showed transporter inhibition often correlated with lipophilicity and molecular weight (>500 Da). Overlapping transporter inhibition was identified, particularly that inhibition of BCRP, OATP1B1 and MATE1 was frequent if the compound inhibited other transporters. In contrast inhibition of OAT1 did not correlate with the other drug transporters tested.

2.
Clin Pharmacol Ther ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671563

RESUMO

Low-volume sampling devices offer the promise of lower discomfort and greater convenience for patients, potentially reducing patient burden and enabling decentralized clinical trials. In this study, we determined whether low-volume sampling devices produce pharmacokinetic (PK) data comparable to conventional venipuncture for a diverse set of monoclonal antibodies (mAbs) and small molecules. We adopted an open-label, non-randomized, parallel-group, single-site study design, with four cohorts of 10 healthy subjects per arm. The study drugs, doses, and routes of administration included: crenezumab (15 mg/kg, intravenous infusion), etrolizumab (210 mg, subcutaneous), GDC-X (oral), and hydroxychloroquine (HCQ, 200 mg, oral). Samples were collected after administration of a single dose of each drug using conventional venipuncture and three low-volume capillary devices: TassoOne Plus for liquid blood, Tasso-M20 for dry blood, both applied to the arm, and Neoteryx Mitra® for dry blood obtained from fingertips. Serum/plasma concentrations from venipuncture and TassoOne Plus samples overlapped and PK parameters were comparable for all drugs, except HCQ. After applying a baseline hematocrit value, the dry blood concentrations and PK parameters for the two monoclonal antibodies were comparable to those obtained from venipuncture. For the two small molecules, two bridging strategies were evaluated for converting dry blood concentrations to equivalent plasma concentrations. A baseline hematocrit correction and/or linear regression-based correction was effective for GDC-X, but not for HCQ. Additionally, the study evaluated the bioanalytical data quality and comparability from the various collection methods, as well as patient preference for the devices.

3.
Pharmaceutics ; 16(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675225

RESUMO

Pralsetinib is a kinase inhibitor indicated for the treatment of metastatic rearranged during transfection (RET) fusion-positive non-small cell lung cancer. Pralsetinib is primarily eliminated by the liver and hence hepatic impairment (HI) is likely alter its pharmacokinetics (PK). Mild HI has been shown to have minimal impact on the PK of pralsetinib. This hepatic impairment study aimed to determine the pralsetinib PK, safety and tolerability in subjects with moderate and severe HI, as defined by the Child-Pugh and National Cancer Institute Organ Dysfunction Working Group (NCI-ODWG) classification systems, in comparison to subjects with normal hepatic function. Based on the Child-Pugh classification, subjects with moderate and severe HI had similar systemic exposure (area under the plasma concentration time curve from time 0 to infinity [AUC0-∞]) to pralsetinib, with AUC0-∞ geometric mean ratios (GMR) of 1.12 and 0.858, respectively, compared to subjects with normal hepatic function. Results based on the NCI-ODWG classification criteria were comparable; the AUC0-∞ GMR were 1.22 and 0.858, respectively, for subjects with moderate and severe HI per NCI-ODWG versus those with normal hepatic function. These results suggested that moderate and severe hepatic impairment did not have a meaningful impact on the exposure to pralsetinib, thus not warranting a dose adjustment in this population.

4.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 660-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481038

RESUMO

Pralsetinib, a potent and selective inhibitor of oncogenic RET fusion and RET mutant proteins, is a substrate of the drug metabolizing enzyme CYP3A4 and a substrate of the efflux transporter P-gp based on in vitro data. Therefore, its pharmacokinetics (PKs) may be affected by co-administration of potent CYP3A4 inhibitors and inducers, P-gp inhibitors, and combined CYP3A4 and P-gp inhibitors. With the frequent overlap between CYP3A4 and P-gp substrates/inhibitors, pralsetinib is a challenging and representative example of the need to more quantitatively characterize transporter-enzyme interplay. A physiologically-based PK (PBPK) model for pralsetinib was developed to understand the victim drug-drug interaction (DDI) risk for pralsetinib. The key parameters driving the magnitude of pralsetinib DDIs, the P-gp intrinsic clearance and the fraction metabolized by CYP3A4, were determined from PBPK simulations that best captured observed DDIs from three clinical studies. Sensitivity analyses and scenario simulations were also conducted to ensure these key parameters were determined with sound mechanistic rationale based on current knowledge, including the worst-case scenarios. The verified pralsetinib PBPK model was then applied to predict the effect of other inhibitors and inducers on the PKs of pralsetinib. This work highlights the challenges in understanding DDIs when enzyme-transporter interplay occurs, and demonstrates an important strategy for differentiating enzyme/transporter contributions to enable PBPK predictions for untested scenarios and to inform labeling.


Assuntos
Citocromo P-450 CYP3A , Pirazóis , Pirimidinas , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Piridinas , Proteínas de Membrana Transportadoras , Inibidores do Citocromo P-450 CYP3A/farmacologia , Modelos Biológicos
5.
J Clin Pharmacol ; 64(5): 544-554, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105505

RESUMO

Tiragolumab is a first-in-class, fully human IgG1/kappa anti-TIGIT monoclonal antibody that blocks the binding of TIGIT to CD155 (the poliovirus receptor). We summarize the pharmacokinetics (PK) data from the phase 1a/1b GO30103 study of Q3W (every 3 weeks) sequential dosing of tiragolumab (2, 8, 30, 100, 400, 600, or 1200 mg) followed by atezolizumab (1200 mg), Q4W (every 4 weeks) sequential dosing (tiragolumab 840 mg followed by atezolizumab 1680 mg), and Q4W co-infusion (tiragolumab 840 mg plus atezolizumab 1680 mg). Serum samples were collected at multiple time points following tiragolumab and atezolizumab intravenous infusion in patients with solid tumors for PK and immunogenicity assessment. The serum PK profile of tiragolumab appeared to be biphasic, with a rapid distribution phase followed by a slower elimination phase when administered alone or in combination with atezolizumab. In phase 1a, across doses of tiragolumab ranging from 2 to 1200 mg (cycle 1), the geometric mean (GM), coefficient of variation (CV%), serum tiragolumab Cmax ranged from 0.682 to 270 µg/mL (18.6% to 36.5%) and Cmin ranged from 0.0125 to 75.3 µg/mL (0.0% to 24.2%). The GM systemic exposure (area under the plasma drug concentration-time curve, AUC0-21) ranged from 310 to 2670 µg day/mL (20.5% to 27.0%); interindividual variability in AUC0-21 ranged from 20.5% to 43.9%. Tiragolumab exposure increased in an approximately dose-proportional manner when administered alone or with atezolizumab at doses ≥100 mg. Postbaseline, 4/207 patients (1.9%) were positive for treatment-emergent antidrug antibodies (ADA) against tiragolumab, each at a single time point. Tiragolumab combined with atezolizumab demonstrated desirable PK properties, with no drug-drug interactions or immunogenicity liability. There were no meaningful differences in tiragolumab or atezolizumab exposure between the Q4W co-infusion and sequential dosing cohorts. ClinicalTrials.gov: NCT02794571 (date of registration June 6, 2016).


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/administração & dosagem , Adulto , Idoso , Relação Dose-Resposta a Droga , Infusões Intravenosas , Área Sob a Curva , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem
6.
Drug Metab Dispos ; 51(10): 1332-1341, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524543

RESUMO

Ipatasertib (GDC-0068) is a potent, highly selective, small-molecule inhibitor of protein kinase B (Akt) being developed by Genentech/Roche as a single agent and in combination with other therapies for the treatment of cancers. To fully understand the absorption, metabolism, and excretion of ipatasertib in humans, an open-label study using 14C-radiolabeled ipatasertib was completed to characterize the absolute bioavailability (period 1) and mass balance and metabolite profiling (period 2). In period 1, subjects were administered a 200 mg oral dose of ipatasertib followed by an 80 µg (800 nCi) intravenous dose of [14C]-ipatasertib. In period 2, subjects received a single oral dose containing approximately 200 mg (100 µCi) [14C]-ipatasertib. In an integrated analytical strategy, accelerator mass spectrometry was applied to measure the 14C microtracer intravenous pharmacokinetics in period 1 and fully profile plasma radioactivity in period 2. The systemic plasma clearance and steady-state volume of distribution were 98.8 L/h and 2530 L, respectively. The terminal half-lives after oral and intravenous administrations were similar (26.7 and 27.4 hours, respectively) and absolute bioavailability of ipatasertib was 34.0%. After a single oral dose of [14C]-ipatasertib, 88.3% of the administered radioactivity was recovered with approximately 69.0% and 19.3% in feces and urine, respectively. Radioactivity in feces and urine was predominantly metabolites with 24.4% and 8.26% of dose as unchanged parent, respectively; indicating that ipatasertib had been extensively absorbed and hepatic metabolism was the major route of clearance. The major metabolic pathway was N-dealkylation mediated by CYP3A, and minor pathways were oxidative by cytochromes P450 and aldehyde oxidase. SIGNIFICANCE STATEMENT: The study provided definitive information regarding the absolute bioavailability and the absorption, metabolism, and excretion pathways of ipatasertib, a potent, novel, and highly selective small-molecule inhibitor of protein kinase B (Akt). An ultrasensitive radioactive counting method, accelerator mass spectrometry was successfully applied for 14C-microtracer absolute bioavailability determination and plasma metabolite profiling.


Assuntos
Piperazinas , Proteínas Proto-Oncogênicas c-akt , Humanos , Disponibilidade Biológica , Proteínas Proto-Oncogênicas c-akt/análise , Taxa de Depuração Metabólica , Fezes/química , Administração Oral
7.
JCO Clin Cancer Inform ; 7: e2200168, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37116107

RESUMO

PURPOSE: Hyperglycemia is a major adverse event of phosphatidylinositol 3-kinase/AKT inhibitor class of cancer therapeutics. Machine learning (ML) methodologies can identify and highlight how explanatory variables affect hyperglycemia risk. METHODS: Using data from clinical trials of the AKT inhibitor ipatasertib (IPAT) in the metastatic castrate-resistant prostate cancer setting, we trained an XGBoost ML model to predict the incidence of grade ≥2 hyperglycemia (HGLY ≥ 2). Of the 1,364 patients included in our analysis, 19.4% (n = 265) of patients had HGLY ≥2 events with a median time of first onset of 28 days (range, 0-753 days), and 30.0% (n = 221) of patients on an IPAT regimen had at least one HGLY ≥2 event compared with 7.0% (n = 44) of patients on placebo. RESULTS: An 11-variable XGBoost model predicted HGLY ≥2 events well with an AUROC of 0.83 ± 0.02 (mean ± standard deviation). Using SHapley Additive exPlanations analysis, we found IPAT exposure and baseline HbA1c levels to be the strongest predictors of HGLY ≥2, with additional predictivity of baseline measurements of fasting glucose, magnesium, and high-density lipoproteins. CONCLUSION: The findings support using patients' prediabetic status as a key factor for hyperglycemia monitoring and/or trial exclusion criteria. Additionally, the model and relationships between explanatory variables and HGLY ≥2 described herein can help identify patients at high risk for hyperglycemia and develop rational risk mitigation strategies.


Assuntos
Hiperglicemia , Neoplasias da Próstata , Humanos , Masculino , Hiperglicemia/induzido quimicamente , Hiperglicemia/diagnóstico , Aprendizado de Máquina , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Fatores de Risco , Inibidores de Proteínas Quinases/uso terapêutico
8.
J Biopharm Stat ; 33(6): 800-811, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36637189

RESUMO

With the development of novel treatment therapies as well as evolving and innovative approaches to conduct clinical trials, the landscape of pediatric oncology drug development has dramatically changed in recent years. Despite this change, approvals for new drugs and labeling updates to ensure availability of proper treatment for pediatric patients with cancer remain slow. The context of drug development in pediatric tumors has also changed with regulatory initiatives in the US and Europe, creating a great need for faster development of novel drugs. Today, conventional study designs have been replaced or complemented by novel clinical trial designs, such as master protocols and platform trials, to optimize cancer drug development and enable faster regulatory approval. The iMATRIX platform is a mechanism-of-action (MOA)-based phase 1/2 trial framework for concurrently studying multiple molecules across a range of relevant pediatric tumor types, taking into account the biology of each pediatric tumor type. Six studies have been conducted, ongoing, or planned on the iMATRIX platform - investigating atezolizumab, cobimetinib, entrectinib, idasanutlin, alectinib, and glofitamab. A brief overview of study designs and characteristics are shared in this article, along with learnings from them.


Assuntos
Oncologia , Neoplasias , Humanos , Criança , Oncologia/métodos , Neoplasias/tratamento farmacológico , Desenvolvimento de Medicamentos , Biologia
9.
Clin Genitourin Cancer ; 21(2): 230-237.e1, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697317

RESUMO

PURPOSE: Adding ipatasertib to abiraterone and prednisone/prednisolone significantly improved radiographic progression-free survival for patients with metastatic castration-resistant prostate cancer (mCRPC) with PTEN-loss tumours by immunohistochemistry in the IPATential150 trial (NCT03072238). Here we characterise the safety of these agents in subpopulations and assess manageability of key adverse events (AEs). MATERIALS AND METHODS: In this randomised, double-blind, phase 3 trial, patients with previously untreated asymptomatic or mildly symptomatic mCRPC were randomised 1:1 to receive ipatasertib-abiraterone or placebo-abiraterone (all with prednisone/prednisolone). AEs were analysed, focusing on key AEs of diarrhoea, hyperglycaemia, rash and transaminase increased. RESULTS: 1097 patients received study medication and were assessed for safety (47% with PTEN-loss tumours by immunohistochemistry and 20% were Asian). Ipatasertib was associated with increased Grade 3/4 AEs and AEs leading to treatment discontinuation vs placebo. The rate of discontinuation of ipatasertib was 18% in patients with PTEN-loss and 21% overall. The frequencies of all-grade, Grade 3/4 and serious AEs were similar between the PTEN-loss and overall populations. Diarrhoea, hyperglycaemia, rash and transaminase elevation were more frequent in ipatasertib-treated patients, appearing rapidly after treatment initiation (median onset: 8-43 days for ipatasertib arm and 56-104 days for placebo). The ipatasertib discontinuation rate was 32% and 18% in Asian and non-Asian patients, respectively, despite similar baseline characteristics and Grade 3/4 AE frequencies between groups. CONCLUSIONS: Ipatasertib plus abiraterone had an overall tolerable safety profile consistent with known toxicities. More AEs leading to drug discontinuation were observed with ipatasertib than placebo, but incidence would likely be lessened with prophylactic measures.


Assuntos
Exantema , Hiperglicemia , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Prednisona , Prednisolona/uso terapêutico , Exantema/induzido quimicamente , Exantema/tratamento farmacológico , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Acetato de Abiraterona/uso terapêutico
10.
Clin Transl Sci ; 15(12): 2989-2999, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197694

RESUMO

Ipatasertib, an AKT inhibitor, in combination with prednisone and abiraterone, is under evaluation for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Hyperglycemia is an on-target effect of ipatasertib. An open-label, single-arm, single-sequence, signal-seeking study (n = 25 mCRPC patients) was conducted to evaluate the glucose changes across four different treatment periods: ipatasertib alone, ipatasertib-prednisone combination, ipatasertib-prednisone-abiraterone combination (morning dose), and ipatasertib-prednisone-abiraterone combination (evening dose). Continuous glucose monitoring (CGM) was used in this study to compare the dynamic glucose changes across the different treatment periods. Four key parameters: average glucose, peak glucose and % time in range (70-180 and >180 mg/dl) were evaluated for this comparison. Ipatasertib-prednisone-abiraterone combination when administered in the morning after an overnight fast significantly increased average glucose, peak glucose and % time in range >180 mg/dl compared to ipatasertib monotherapy. Ipatasertib, when co-administered with abiraterone, increased ipatasertib and M1 (G-037720) metabolite exposures by approximately 1.5- and 2.2-fold, respectively. Exposure-response analysis results show that increased exposures of ipatasertib in combination with abiraterone are associated with increased glucose levels. When ipatasertib-prednisone-abiraterone combination was administered as an evening dose compared to a morning dose, lowered peak glucose and improved % time in range was observed. The results from this study suggest that dosing ipatasertib after an evening meal followed by overnight fasting can be an effective strategy for managing increased glucose levels.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Glicemia , Automonitorização da Glicemia , Glucose/uso terapêutico , Prednisona/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Resultado do Tratamento
11.
Pharmaceutics ; 14(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36297536

RESUMO

Ipatasertib is a selective, small molecule Akt inhibitor that is currently being developed for the treatment of metastatic castration-resistant prostate cancer. Darolutamide is an androgen receptor (AR) inhibitor that is approved for the treatment of non-metastatic castration-resistant prostate cancer. Ipatasertib is metabolized by CYP3A4 to form a less active metabolite M1 (G-037720). Ipatasertib is also a weak time-dependent CYP3A4 inhibitor. Darolutamide is a mild CYP3A4 inducer and is metabolized into an active keto-darolutamide metabolite via CYP3A4. In this Phase 1b open-label, single sequence crossover study, ipatasertib pharmacokinetics safety and tolerability were evaluated in combination with darolutamide in metastatic castration-resistant prostate cancer (n = 15 patients). Specifically, the effect of 600 mg BID of darolutamide on 400 mg QD ipatasertib was evaluated in this study. Based on pharmacokinetic analysis, a mild reduction in ipatasertib AUC0-24 h,ss and Cmax,ss exposures was observed (~8% and ~21%, respectively) when administered in combination with darolutamide, which is considered not clinically meaningful. M1 exposures were similar with and without darolutamide administration. Darolutamide and keto-darolutamide exposures in combination with ipatasertib were similar to previously reported exposures for single agent darolutamide. Overall, the combination appears to be well-tolerated in the metastatic castration-resistant prostate cancer indication with very few AEs.

12.
Cancer Chemother Pharmacol ; 90(6): 511-521, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305957

RESUMO

PURPOSE: The exposure-response relationships for efficacy and safety of ipatasertib, a selective AKT kinase inhibitor, were characterized using data collected from 1101 patients with metastatic castration-resistant prostate cancer in the IPATential150 study (NCT03072238). METHODS: External validation of a previously developed population pharmacokinetic model was performed using the observed pharmacokinetic data from the IPATential150 study. Exposure metrics of ipatasertib for subjects who received ipatasertib 400 mg once-daily orally in this study were generated as model-predicted area under the concentration-time curve at steady state (AUCSS). The exposure-response relationship with radiographic progression-free survival (rPFS) was evaluated using Cox regression and relationships with safety endpoints were assessed using logistic regression. RESULTS: A statistically significant correlation between ipatasertib AUCSS and improved survival was found in patients with PTEN-loss tumors (hazard ratio [HR]: 0.92 per 1000 ng h/mL AUCSS, 95% confidence interval [CI] 0.87-0.98, p = 0.011). In contrast, an improvement in rPFS was seen in subjects receiving ipatasertib treatment (HR: 0.84, 95% CI 0.71-0.99, p = 0.038) but this effect was not associated with ipatasertib AUCSS in the intention-to-treat population. Incidences of some adverse events (AEs) had statistically significant association with ipatasertib AUCSS (serious AEs, AEs leading to discontinuation, and Grade ≥ 2 hyperglycemia), while others were associated with only ipatasertib treatment (AEs leading to dose reduction, Grade ≥ 3 diarrhea, and Grade ≥ 2 rash). CONCLUSIONS: The exposure-efficacy results indicated that patients receiving ipatasertib may continue benefiting from this treatment at the administered dose, despite some variability in exposures, while the exposure-safety results suggested increased risks of AEs with ipatasertib treatment and/or increased ipatasertib exposures.


Assuntos
Piperazinas , Neoplasias de Próstata Resistentes à Castração , Pirimidinas , Humanos , Masculino , Piperazinas/efeitos adversos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Pirimidinas/efeitos adversos
13.
Cancer Chemother Pharmacol ; 89(5): 707-720, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35428895

RESUMO

PURPOSE: Ipatasertib, a potent and highly selective small-molecule inhibitor of AKT, is currently under investigation for treatment of cancer. Ipatasertib is a substrate and a time-dependent inhibitor of CYP3A4. It exhibits non-linear pharmacokinetics at subclinical doses in the clinical dose escalation study. To assess the DDI risk of ipatasertib at the intended clinical dose of 400 mg with CYP3A4 inhibitors, inducers, and substrates, a fit-for-purpose physiologically based pharmacokinetic (PBPK) model of ipatasertib was developed. METHODS: The PBPK model was constructed in Simcyp using in silico, in vitro, and clinical data and was optimized and verified using clinical data. RESULTS: The PBPK model described non-linear pharmacokinetics of ipatasertib and captured the magnitude of the observed clinical DDIs. Following repeated doses of 400 mg ipatasertib once daily (QD), the PBPK model predicted a 3.3-fold increase of ipatasertib exposure with itraconazole; a 2-2.5-fold increase with moderate CYP3A4 inhibitors, erythromycin and diltiazem; and no change with a weak CYP3A4 inhibitor, fluvoxamine. Additionally, in the presence of strong or moderate CYP3A4 inducers, rifampicin and efavirenz, ipatasertib exposures were predicted to decrease by 86% and 74%, respectively. As a perpetrator, the model predicted that ipatasertib (400 mg) caused a 1.7-fold increase in midazolam exposure. CONCLUSION: This study demonstrates the value of using a fit-for-purpose PBPK model to assess the clinical DDIs for ipatasertib and to provide dosing strategies for the concurrent use of other CYP3A4 perpetrators or victims.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Simulação por Computador , Indutores do Citocromo P-450 CYP3A , Interações Medicamentosas , Humanos , Modelos Biológicos , Piperazinas , Pirimidinas
14.
Eur J Clin Pharmacol ; 78(5): 801-812, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35089373

RESUMO

PURPOSE: The potent, selective phosphodiesterase-9A inhibitor BI 409306 may be beneficial for patients with attenuated psychosis syndrome and could prevent relapse in patients with schizophrenia. Transient BI 409306-dependent increases in heart rate (HR) demonstrated previously necessitated cardiac safety characterisation. We evaluated cardiac effects of BI 409306 in healthy volunteers during rest and exercise. METHODS: In this double-blind, three-way crossover study, volunteers received placebo, BI 409306 50 mg or 200 mg in randomised order (same treatment on Days 1 [resting] and 3 [exercise]). Cardiopulmonary exercise testing was performed twice post treatment on Day 3 of each period. BI 409306-mediated effects on placebo-corrected change from baseline in resting HR (ΔΔHR) were evaluated based on exposure-response analysis and a random coefficient model. Adverse events (AEs) were recorded. RESULTS: Overall, 19/20 volunteers completed. Resting ΔΔHR versus BI 409306 concentration yielded a slope of 0.0029 beats/min/nmol/L. At the geometric mean (gMean) maximum plasma concentration (Cmax) for BI 409306 50 and 200 mg, predicted mean (90% CI) ΔΔHRs were 0.80 (- 0.76, 2.36) and 5.46 (2.44, 8.49) beats/min, respectively. Maximum adjusted mean differences from placebo (90% CI) in resting HR for BI 409306 50 and 200 mg were 3.85 (0.73, 6.97) and 4.93 (1.69, 8.16) beats/min. Maximum differences from placebo in resting HR occurred at/near gMean Cmax and returned to baseline after approximately 4 h. The proportion of volunteers with AEs increased with BI 409306 dose. CONCLUSION: Observed hemodynamic effects following BI 409306 administration were of low amplitude, transient, and followed the pharmacokinetic profile of BI 409306.


Assuntos
Pirazóis , Pirimidinas , Estudos Cross-Over , Método Duplo-Cego , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Pirazóis/efeitos adversos
15.
J Clin Pharmacol ; 62(2): 171-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402068

RESUMO

Ipatasertib is a highly selective small-molecule pan-Akt inhibitor in clinical development. Ipatasertib is predominantly eliminated by the liver, and therefore, the effect of hepatic impairment on ipatasertib pharmacokinetics (PK) was evaluated. In this phase 1 open-label, parallel group study, the PK of ipatasertib were evaluated in subjects with hepatic impairment based on both the Child-Pugh and the National Cancer Institute Organ Dysfunction Working Group classification for hepatic impairment. A single dose of ipatasertib at 100 mg was administered and the PK was characterized in healthy subjects with normal hepatic function or mild, moderate, and severe hepatic impairment. Based on Child-Pugh classification, subjects with moderate and severe hepatic impairment had an ≈2- and 3-fold increase in systemic exposure (area under the plasma concentration-time curve from time 0 to infinity [AUC0-∞ ]) to ipatasertib, respectively, compared to subjects with normal hepatic function. Systemic exposure (AUC0-∞ ) to ipatasertib in subjects with mild hepatic impairment was comparable to that in subjects with normal hepatic function. In accordance with reduced clearance capacity, subjects with mild to severe hepatic impairment showed lower systemic exposure (AUC0-∞ ) of ipatasertib metabolite M1 (G-037720). Overall results were comparable between Child-Pugh and National Cancer Institute Organ Dysfunction Working Group classification criteria. Based on the results from this study, no dosage adjustment is required for ipatasertib when treating patients with mild hepatic impairment, whereas a dose reduction would be recommended for subjects with moderate or severe hepatic impairment. Based on real-world data analysis, ≈2% of the intended patient population is expected to need a modified dose due to moderate or severe hepatic impairment.


Assuntos
Antineoplásicos/farmacocinética , Falência Hepática/epidemiologia , Falência Hepática/metabolismo , Piperazinas/farmacocinética , Pirimidinas/farmacocinética , Adulto , Idoso , Área Sob a Curva , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Gravidade do Paciente
16.
Cancer Chemother Pharmacol ; 88(6): 921-930, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34471960

RESUMO

PURPOSE: To examine the single- and multiple-dose pharmacokinetics (PK), CYP3A inhibition potential of ipatasertib, and effect of food on PK of ipatasertib in patients with refractory solid tumors and a dedicated food effect assessment in healthy subjects. METHODS: The Phase I dose-escalation study enrolled patients with solid tumors in a standard 3 + 3 design with a 1 week washout after the first dose, followed by once-daily dosing on a 3-week-on/1-week-off schedule. In the expansion cohort, the effect of ipatasertib on CYP3A substrate (midazolam) was assessed by examining the change in midazolam exposure when dosed in the absence and presence of steady-state ipatasertib at 600 mg. The effect of food on ipatasertib PK was studied with ipatasertib administered in fed or fasted state (6 patients from Phase I patient study and 18 healthy subjects from the dedicated food effect study). RESULTS: Ipatasertib was generally well tolerated at doses up to 600 mg given daily for 21 days. Ipatasertib showed rapid absorption (tmax, 0.5-3 h), was dose-proportional over a range of 200-800 mg, had a median half-life (range) of 45.0 h (27.8-66.9 h), and had approximately two-fold accumulation following once-daily dosing. Midazolam exposure (AUC0-∞) increased by 2.2-fold in the presence of ipatasertib. PK was comparable in subjects administered ipatasertib in a fed or fasted state. CONCLUSION: Ipatasertib exhibited rapid absorption and was dose-proportional over a broad dose range. Ipatasertib appeared to be a moderate CYP3A inhibitor when administered at 600 mg and could be administered with or without food in clinical studies. TRAIL REGISTRATION: NCT01090960 (registered March 23, 2010); NCT02536391 (registered August 31, 2015).


Assuntos
Antineoplásicos/uso terapêutico , Citocromo P-450 CYP3A/química , Interações Alimento-Droga , Neoplasias/tratamento farmacológico , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Estudos de Casos e Controles , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/uso terapêutico , Ingestão de Alimentos , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias/patologia , Piperazinas/administração & dosagem , Piperazinas/farmacocinética , Prognóstico , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Distribuição Tecidual
17.
Methods Mol Biol ; 2342: 695-707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272713

RESUMO

New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing. The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits, bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport. Alternatively, hepatocellular necrosis, hypoalbuminuria, or cholestasis may also lead to elevation of bilirubin; in some cases, these effects may be irreversible.This chapter aims to demonstrate application of enzyme kinetic principles in understanding the risk of bilirubin elevation through inhibition of multiple processes-involving both enzymes and transporters. In the sections that follow, we first provide a brief summary of bilirubin formation and disposition. Two case examples are then provided to illustrate the enzyme kinetic studies needed for risk assessment and for identifying the mechanisms of bilirubin elevation. Caveats of methods and data interpretation are discussed in these case studies. The data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in enzyme kinetics to the reader.


Assuntos
Bilirrubina/análise , Glucuronosiltransferase/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Bilirrubina/sangue , Bilirrubina/urina , Cães , Desenvolvimento de Medicamentos , Humanos , Concentração Inibidora 50 , Cinética , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos , Bibliotecas de Moléculas Pequenas/efeitos adversos
18.
J Clin Pharmacol ; 61(12): 1579-1591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34273118

RESUMO

Ipatasertib is a selective AKT kinase inhibitor currently in development for the treatment of several solid tumors, including breast and prostate cancers. This study was undertaken to characterize pharmacokinetic profiles of ipatasertib and its metabolite M1 (G-037720) and to understand the sources of variability. Population pharmacokinetic models of ipatasertib and M1 were developed separately using data from 342 individuals with cancer from 5 phase 1 and 2 studies. The final population pharmacokinetic models for ipatasertib and M1 were 3-compartmental, with first-order elimination and sequential zero- and first-order absorption. Ipatasertib bioavailability and M1 formation increased after multiple dosing, resulting in an increase in exposure beyond that expected from accumulation alone. Covariate effects of ipatasertib include decreased oral clearance with increasing age and with coadministration of abiraterone, as well as decreased bioavailability with increasing weight. For ages 37 and 80 years, steady-state area under the curve (AUCss ) was predicted to be 81% and 109%, respectively, of the typical population value (64 years). For body weight of 49 and 111 kg, AUCss was predicted to be 132% and 78%, respectively, of the typical population value (75 kg). The small magnitude of change in ipatasertib exposure is not likely to be clinically relevant. For M1, the peripheral distribution volume and intercompartmental clearance increased with increasing weight. Coadministration of abiraterone was estimated to increase M1 exposure by 61% at steady state. Mild and moderate renal impairment, mild hepatic impairment, and race were not identified as significant covariates in the final models for ipatasertib and M1.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Piperazinas/farmacocinética , Pirimidinas/farmacocinética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Androstenos/administração & dosagem , Androstenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Área Sob a Curva , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Neoplasias/patologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Piperazinas/uso terapêutico , Prednisolona/administração & dosagem , Prednisolona/farmacologia , Pirimidinas/uso terapêutico
19.
J Pharmacol Exp Ther ; 378(2): 87-95, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34049965

RESUMO

Ipatasertib is a pan-AKT inhibitor in development for the treatment of cancer. Ipatasertib was metabolized by CYP3A4 to its major metabolite, M1 (G-037720), and was a P-gp substrate and OATP1B1/1B3 inhibitor in vitro. A phase I drug-drug interaction (DDI) study (n = 15) was conducted in healthy subjects to evaluate the effect of itraconazole (200-mg solution QD, 4 days), a strong CYP3A4 and P-gp inhibitor, on pharmacokinetics of ipatasertib (100-mg single dose). Itraconazole increased the Cmax and AUC0 -∞ of ipatasertib by 2.3- and 5.5-fold, respectively, increased the half-life by 53%, and delayed the tmax by 1 hour. The Cmax and AUC0-72h of its metabolite M1 (G-037720) reduced by 91% and 68%, respectively. This study confirmed that CYP3A4 plays a major role in ipatasertib clearance. Furthermore, the interaction of ipatasertib with coproporphyrin (CP) I and CPIII, the two endogenous substrates of OATP1B1/1B3, was evaluated in this study. CPI and CPIII plasma levels were unchanged in the presence of ipatasertib, both at exposures of 100 mg and at higher exposures in combination with itraconazole. This indicated no in vivo inhibition of OATP1B1/1B3 by ipatasertib. Additionally, it was shown that CPI and CPIII were not P-gp substrates in vitro, and itraconazole had no effect on CPI and CPIII concentrations in vivo. The latter is an important finding because it will simplify interpretation of future DDI studies using CPI/CPIII as OATP1B1/1B3 biomarkers. SIGNIFICANCE STATEMENT: This drug-drug interaction study in healthy volunteers demonstrated that CYP3A4 plays a major role in ipatasertib clearance, and that ipatasertib is not an organic anion transporting polypeptide 1B1/1B3 inhibitor. Furthermore, it was demonstrated that itraconazole, an inhibitor of CYP3A4 and several transporters, did not affect CPI/CPIII levels in vivo. This increases the understanding and application of these endogenous substrates as well as itraconazole in complex drug interaction studies.


Assuntos
Coproporfirinas , Humanos , Itraconazol , Pessoa de Meia-Idade
20.
Drug Metab Dispos ; 48(12): 1264-1270, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037044

RESUMO

Organic anion-transporting polypeptide (OATP) 1B1/3-mediated drug-drug interaction (DDI) potential is evaluated in vivo with rosuvastatin (RST) as a probe substrate in clinical studies. We calibrated our assay with RST and estradiol 17-ß-D-glucuronide (E217ßG)/cholecystokinin-8 (CCK8) as in vitro probes for qualitative and quantitative prediction of OATP1B-mediated DDI potential for RST. In vitro OATP1B1/1B3 inhibition using E217ßG and CCK8 yielded higher area under the curve (AUC) ratio (AUCR) values numerically with the static model, but all probes performed similarly from a qualitative cutoff-based prediction, as described in regulatory guidances. However, the magnitudes of DDI were not captured satisfactorily. Considering that clearance of RST is also mediated by gut breast cancer resistance protein (BCRP), inhibition of BCRP was also incorporated in the DDI prediction if the gut inhibitor concentrations were 10 × IC50 for BCRP inhibition. This combined static model closely predicted the magnitude of RST DDI with root-mean-square error values of 0.767-0.812 and 1.24-1.31 with and without BCRP inhibition, respectively, for in vitro-in vivo correlation of DDI. Physiologically based pharmacokinetic (PBPK) modeling was also used to simulate DDI between RST and rifampicin, asunaprevir, and velpatasvir. Predicted AUCR for rifampicin and asunaprevir was within 1.5-fold of that observed, whereas that for velpatasvir showed a 2-fold underprediction. Overall, the combined static model incorporating both OATP1B and BCRP inhibition provides a quick and simple mathematical approach to quantitatively predict the magnitude of transporter-mediated DDI for RST for routine application. PBPK complements the static model and provides a framework for studying molecules when a dynamic model is needed. SIGNIFICANCE STATEMENT: Using 22 drugs, we show that a static model for organic anion-transporting polypeptide (OATP) 1B1/1B3 inhibition can qualitatively predict potential for drug-drug interaction (DDI) using a cutoff-based approach, as in regulatory guidances. However, consideration of both OATP1B1/3 and gut breast cancer resistance protein inhibition provided a better prediction of the magnitude of the transporter-mediated DDI of these inhibitors with rosuvastatin. Based on these results, we have proposed an empirical mechanistic-static approach for a more reliable prediction of transporter-mediated DDI liability with rosuvastatin that drug development teams can leverage.


Assuntos
Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Modelos Biológicos , Rosuvastatina Cálcica/farmacocinética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Área Sob a Curva , Colecistocinina/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Estradiol/análogos & derivados , Estradiol/farmacocinética , Células HEK293 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacocinética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...