Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 222: 106070, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34331897

RESUMO

Toxoplasma gondii is a protozoan parasite that can cause severe and debilitating diseases, especially in immunocompromised individuals. The available treatment is based on drugs that have low efficacy, high toxicity, several adverse effects, and need long periods of treatment. Thus, the search for therapeutic alternatives is urgently needed. Biogenic silver nanoparticles (AgNp-Bio) have been associated with several biological effects, as antiproliferative, pro-apoptotic, antioxidant, antiviral, antifungal, and antiprotozoal activity. Thus, the objective was evaluating AgNp-Bio effect on HeLa cells infected with T. gondii (RH strain). First, nontoxic AgNp-Bio concentrations for HeLa cells (1.5 - 6 µM) were determined, which were tested on cells infected with T. gondii. A significant reduction in infection, proliferation, and intracellular parasitic load was observed, also an increase in ROS and IL-6. Additionally, the evaluation of the action mechanisms of the parasite showed that AgNp-Bio acts directly on tachyzoites, inducing depolarization of the mitochondrial membrane, ROS increase, and lipid bodies accumulation, as well as triggering an autophagic process, causing damage to the parasite membrane, and phosphatidylserine exposure. Based on this, it was inferred that AgNp-Bio affects T. gondii by inducing immunomodulation and microbicidal molecules produced by infected cells, and acts on parasites, by inducing autophagy and apoptosis.


Assuntos
Autofagia , Nanopartículas Metálicas , Prata , Toxoplasma , Toxoplasmose , Apoptose , Proliferação de Células , Células HeLa , Humanos , Prata/farmacologia
2.
Parasitology ; 148(12): 1447-1457, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34187608

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis, and an important problem of public health. The current treatment for toxoplasmosis is the combination of pyrimethamine and sulphadiazine, which do not act in the chronic phase of toxoplasmosis and have several side-effects. This study evaluated the anti-T. gondii activity and potential mechanism of Moringa oleifera seeds' aqueous extract in vitro. The concentration of M. oleifera extract in HeLa cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assays. The presence of T. gondii was assessed by quantitative polymerase chain reaction and toluidine blue staining. Pyrimethamine and sulphadiazine were used as drug controls. Modifications in T. gondii morphology and ultrastructure were observed by electron microscopy. In vitro, the M. oleifera extract had no toxic effect on HeLa cells at concentrations below 50 µg mL−1. Moringa oleifera extract inhibits T. gondii invasion and intracellular proliferation with similar results for sulphadiazine + pyrimethamine, and also shows cellular nitric oxide production at a concentration of 30 µg mL−1. Electron microscopy analyses indicated structural and ultrastructural modifications in tachyzoites after treatment. We also observed an increase in reactive oxygen species production and a loss of mitochondrial membrane integrity. Nile Red staining assays demonstrated a lipid accumulation. Annexin V­fluorescein isothiocyanate and propidium iodide staining demonstrated that the main action of M. oleifera extract in T. gondii tachyzoites was compatible with late apoptosis. In conclusion, M. oleifera extract has anti-T. gondii activity in vitro and might be a promising substance for the development of a new anti-T. gondii drug.


Assuntos
Moringa oleifera , Toxoplasma , Toxoplasmose , Apoptose , Células HeLa , Humanos , Moringa oleifera/química , Toxoplasmose/tratamento farmacológico
3.
Acta Trop ; 220: 105938, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932363

RESUMO

Leydig cells play pivotal roles in eliciting male characteristics by producing testosterone and any damage to these cells can compromise male fertility Toxoplasma gondii (T. gondii) is an intracellular parasite capable to invade any nucleated cell, including cells from male reproductive system. Herein, we evaluated the capacity of RH strain of T. gondii to infect TM3 Leydig cells and the impact of this infection on testosterone and inflammatory mediators production. We first, by performing adherence, infection, and intracellular proliferation assays, we found a significant increase in the number of infected Leydig cells, peaking 48 h after the infection with T. gondii. Supernatants of TM3 infected cells exhibited, in a time-dependent manner, increased levels of testosterone as well as monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), which is correlated with the robust T. gondii infection. In conclusion, our study provides new insights regarding the harmful effects of T. gondii infection on male reproductive system.


Assuntos
Células Intersticiais do Testículo/parasitologia , Testosterona/biossíntese , Toxoplasmose/metabolismo , Animais , Quimiocina CCL2/biossíntese , Interferon gama/biossíntese , Masculino , Camundongos Endogâmicos BALB C , Fatores de Tempo , Toxoplasma
4.
Acta Parasitol ; 64(3): 612-616, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286354

RESUMO

PURPOSE: Toxoplasma gondii is a protozoan from phylum Apicomplexa, which causes the toxoplasmosis infection; this one exhibits an apicoplast organelle which assists in the metabolism of isoprenoids and other pivotal mediators for the parasite survival. Statins are drugs that inhibit cholesterol synthesis, blocking the conversion of the substrate HMG-CoA to mevalonate, thus preventing the initial processes of the biosynthesis of these precursors, both in humans and parasite. Our goal was to verify whether the Toxoplasma gondii (RH strain) tachyzoites form pretreated with pravastatin and simvastatin in association with pyrimethamine and sulfadiazine at low concentrations could affect the infection processes, suggesting direct action on protozoa intracellular proliferation through the inhibition of isoprenoids in the parasite's apicoplast. METHODS: To have the adhesion, infection, and parasite proliferation during experimental infection investigated, HeLa cells (105) were subjected to a 24-hour infection by T. gondii tachyzoites forms of RH strain (5 × 105) pretreated for 30 min with pravastatin and/or simvastatin combined or not with pyrimethamine and sulfadiazine. RESULTS: Combined with conventional drugs at low concentrations pravastatin and simvastatin inhibit the adhesion, invasion, and intracellular proliferation of T. gondii in HeLa cells which are similar to the positive control. CONCLUSION: Pravastatin and simvastatin in association with pyrimethamine and sulfadiazine at low concentrations can be regarded as a promising, effective alternative to toxoplasmosis treatment with reduced side effects.


Assuntos
Antiprotozoários/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Pravastatina/farmacologia , Pirimetamina/farmacologia , Sinvastatina/farmacologia , Sulfadiazina/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/parasitologia , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Células HeLa , Humanos , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/fisiologia , Toxoplasmose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...