Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 11: 494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625162

RESUMO

Stroke survivors show greater postural oscillations and altered muscular activation compared to healthy controls. This results in difficulties in walking and standing, and in an increased risk of falls. A proper control of the trunk is related to a stable walk and to a lower falling risk; to this extent, rehabilitative protocols are currently working on core stability. The main objective of this work was to evaluate the effectiveness of trunk and balance training performed with a new robotic device designed for evaluation and training of balance and core stability, in improving the recovery of chronic stroke patients compared with a traditional physical therapy program. Thirty chronic stroke patients, randomly divided in two groups, either underwent a traditional rehabilitative protocol, or a robot-based program. Each patient was assessed before and after the rehabilitation and at 3-months follow-up with clinical and robot-based evaluation exercises focused on static and dynamic balance and trunk control. Results from clinical scores showed an improvement in both groups in balance and trunk control. Robot-based indices analysis indicated that the experimental group showed greater improvements in proprioceptive control, reactive balance and postural control in unstable conditions, compared to the control group, showing an improved trunk control with reduced compensatory strategies at the end of the training. Moreover, the experimental group had an increased retention of the benefits obtained with training at 3 months follow up. These results support the idea that such robotic device is a promising tool for stroke rehabilitation.

2.
PLoS One ; 15(6): e0234904, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584912

RESUMO

BACKGROUND: Falls in the elderly are a major public health concern because of their high incidence, the involvement of many risk factors, the considerable post-fall morbidity and mortality, and the health-related and social costs. Given that many falls are preventable, the early identification of older adults at risk of falling is crucial in order to develop tailored interventions to prevent such falls. To date, however, the fall-risk assessment tools currently used in the elderly have not shown sufficiently high predictive validity to distinguish between subjects at high and low fall risk. Consequently, predicting the risk of falling remains an unsolved issue in geriatric medicine. This one-year prospective study aims to develop and validate, by means of a cross-validation method, a multifactorial fall-risk model based on clinical and robotic parameters in older adults. METHODS: Community-dwelling subjects aged ≥ 65 years were enrolled. At the baseline, all subjects were evaluated for history of falling and number of drugs taken daily, and their gait and balance were evaluated by means of the Timed "Up & Go" test (TUG), Gait Speed (GS), Short Physical Performance Battery (SPPB) and Performance-Oriented Mobility Assessment (POMA). They also underwent robotic assessment by means of the hunova robotic device to evaluate the various components of balance. All subjects were followed up for one-year and the number of falls was recorded. The models that best predicted falls-on the basis of: i) only clinical parameters; ii) only robotic parameters; iii) clinical plus robotic parameters-were identified by means of a cross-validation method. RESULTS: Of the 100 subjects initially enrolled, 96 (62 females, mean age 77.17±.49 years) completed the follow-up and were included. Within one year, 32 participants (33%) experienced at least one fall ("fallers"), while 64 (67%) did not ("non-fallers"). The best classifier model to emerge from cross-validated fall-risk estimation included eight clinical variables (age, sex, history of falling in the previous 12 months, TUG, Tinetti, SPPB, Low GS, number of drugs) and 20 robotic parameters, and displayed an area under the receiver operator characteristic (ROC) curve of 0.81 (95% CI: 0.72-0.90). Notably, the model that included only three of these clinical variables (age, history of falls and low GS) plus the robotic parameters showed similar accuracy (ROC AUC 0.80, 95% CI: 0.71-0.89). In comparison with the best classifier model that comprised only clinical parameters (ROC AUC: 0.67; 95% CI: 0.55-0.79), both models performed better in predicting fall risk, with an estimated Net Reclassification Improvement (NRI) of 0.30 and 0.31 (p = 0.02), respectively, and an estimated Integrated Discrimination Improvement (IDI) of 0.32 and 0.27 (p<0.001), respectively. The best model that comprised only robotic parameters (the 20 parameters identified in the final model) achieved a better performance than the clinical parameters alone, but worse than the combination of both clinical and robotic variables (ROC AUC: 0.73, 95% CI 0.63-0.83). CONCLUSION: A multifactorial fall-risk assessment that includes clinical and hunova robotic variables significantly improves the accuracy of predicting the risk of falling in community-dwelling older people. Our data suggest that combining clinical and robotic assessments can more accurately identify older people at high risk of falls, thereby enabling personalized fall-prevention interventions to be undertaken.


Assuntos
Acidentes por Quedas/prevenção & controle , Avaliação Geriátrica/métodos , Vida Independente/estatística & dados numéricos , Robótica , Acidentes por Quedas/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Incidência , Masculino , Equilíbrio Postural/fisiologia , Estudos Prospectivos , Medição de Risco/métodos , Velocidade de Caminhada/fisiologia
3.
Aging Clin Exp Res ; 32(3): 491-503, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31691151

RESUMO

BACKGROUND: Impaired physical performance is common in older adults and has been identified as a major risk factor for falls. To date, there are no conclusive data on the impairment of balance parameters in older subjects with different levels of physical performance. AIMS: The aim of this study was to investigate the relationship between different grades of physical performance, as assessed by the Short Physical Performance Battery (SPPB), and the multidimensional balance control parameters, as measured by means of a robotic system, in community-dwelling older adults. METHODS: This study enrolled subjects aged ≥ 65 years. Balance parameters were assessed by the hunova robot in static and dynamic (unstable and perturbating) conditions, in both standing and seated positions and with the eyes open/closed. RESULTS: The study population consisted of 96 subjects (62 females, mean age 77.2 ± 6.5 years). According to their SPPB scores, subjects were separated into poor performers (SPPB < 8, n = 29), intermediate performers (SPPB = 8-9, n = 29) and good performers (SPPB > 9, n = 38). Poor performers displayed significantly worse balance control, showing impaired trunk control in most of the standing and sitting balance tests, especially in dynamic (both with unstable and perturbating platform/seat) conditions. CONCLUSIONS: For the first time, multidimensional balance parameters, as detected by the hunova robotic system, were significantly correlated with SPPB functional performances in community-dwelling older subjects. In addition, balance parameters in dynamic conditions proved to be more sensitive in detecting balance impairments than static tests.


Assuntos
Avaliação Geriátrica/métodos , Desempenho Físico Funcional , Equilíbrio Postural/fisiologia , Acidentes por Quedas/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Vida Independente , Masculino , Fatores de Risco , Robótica/métodos
4.
IEEE Int Conf Rehabil Robot ; 2019: 417-422, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374665

RESUMO

This article describes the motivation behind and the technical aspects at the basis of the development of the innovative rehabilitation robot hunova®. The paper describes in detail the hardware and software design of the system and summarizes the clinical studies carried out to validate the technology.


Assuntos
Terapia por Exercício/instrumentação , Extremidade Inferior , Robótica , Software , Terapia por Exercício/métodos , Feminino , Humanos , Masculino
5.
IEEE Int Conf Rehabil Robot ; 2019: 570-576, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374691

RESUMO

Postural responses to unstable conditions or perturbations are important predictors of the risk of falling and can reveal balance deficits in people with neurological disorders, such as Parkinson's Disease (PD). However, there is a lack of evidences related to devices and protocols providing a comprehensive and quantitative evaluation of postural responses in different stability conditions. We tested ten people with PD and ten controls on a robotic platform capable to provide different mechanical interactions and to measure the center of pressure displacement, while trunk acceleration was recorded with a sensor placed on the sternum. We evaluated performance while maintaining upright posture in unperturbed, perturbed, and unstable conditions. The latter was tested while standing and sitting. We measured whether the proposed exercises and metrics could highlight differences in postural control. Participants with PD had worse performance metrics when standing under unperturbed or unstable conditions, and when sitting on the unstable platform. PD subjects in response to a forward perturbation showed bigger trunk oscillations coupled with a sharper increase of the CoP backward displacement. These responses could be due to higher stiffness of lower limb which leads to postural instability. The exercises and the proposed metrics highlighted differences in postural control, hence they can be used in clinical environment for the assessment and progression of postural impairments.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural , Robótica , Postura Sentada , Posição Ortostática , Acidentes por Quedas/prevenção & controle , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...