Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 10(2): 025001, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025568

RESUMO

Significance: Motor function evaluation is essential for poststroke dyskinesia rehabilitation. Neuroimaging techniques combined with machine learning help decode a patient's functional status. However, more research is needed to investigate how individual brain function information predicts the dyskinesia degree of stroke patients. Aim: We investigated stroke patients' motor network reorganization and proposed a machine learning-based method to predict the patients' motor dysfunction. Approach: Near-infrared spectroscopy (NIRS) was used to measure hemodynamic signals of the motor cortex in the resting state (RS) from 11 healthy subjects and 31 stroke patients, 15 with mild dyskinesia (Mild), and 16 with moderate-to-severe dyskinesia (MtS). The graph theory was used to analyze the motor network characteristics. Results: The small-world properties of the motor network were significantly different between groups: (1) clustering coefficient, local efficiency, and transitivity: MtS > Mild > Healthy and (2) global efficiency: MtS < Mild < Healthy. These four properties linearly correlated with patients' Fugl-Meyer Assessment scores. Using the small-world properties as features, we constructed support vector machine (SVM) models that classified the three groups of subjects with an accuracy of 85.7%. Conclusions: Our results show that NIRS, RS functional connectivity, and SVM together constitute an effective method for assessing the poststroke dyskinesia degree at the individual level.

2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 829-836, 2018 12 25.
Artigo em Chinês | MEDLINE | ID: mdl-30583305

RESUMO

The possible influence of electromagnetic field (EMF) on the function of neural systems has been widely concerned. In this article, we intend to investigate the effects of long term power frequency EMF exposure on brain cognitive functions and it's mechanism. The Sprague-Dawley (SD) rats were randomly divided into 3 groups: the rats in EMF Ⅰ group were placed in the 2 mT power frequency EMF for 24 days. The rats in EMF Ⅱ group were placed in the 2 mT power frequency EMF for 48 days. The rats in control group were not exposed to the EMF. Then, the 16 channel local field potentials (LFPs) were recorded from rats' prefrontal cortex (PFC) in each group during the working memory (WM) tasks. The causal networks of LFPs were also established by applying the directed transfer function (DTF). Based on that, the differences of behavior and the LFPs network connection patterns between different groups were compared in order to investigate the influence of long term power frequency EMF exposure on working memory. The results showed the rats in the EMF Ⅱ group needed more training to reach the task correction criterion (over 80%). Moreover, the causal network connection strength and the global efficiency of the rats in EMF Ⅰ and EMF Ⅱ groups were significantly lower than the corresponding values of the control group. Meanwhile, significant differences of causal density values were found between EMF Ⅱ group and the other two groups. These results indicate that long term exposure to 2 mT power frequency EMF will reduce the connection strength and the information transfer efficiency of the LFPs causal network in the PFC, as well as the behavior performance of the rats. These results may explain the effect of EMF exposure on working memory from the view of neural network connectivity and provide a support for further studies on the mechanism of the effect of EMF on cognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...