Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(4): 1260-1270, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274075

RESUMO

[4 + 2] cycloaddition has led to diverse polycyclic chiral architectures, serving as novel sources for organic synthesis and biological exploration. Here, an unprecedented class of cadinane sesquiterpene [4 + 2] dimers, henryinins A-E (1-5), with a unique 6/6/6/6/6-fused pentacyclic system, were isolated from Schisandra henryi. The divergent total syntheses of compounds 1-5 and their enantiomers (6-10) were concisely accomplished in eight linear steps using a protection-free approach. Mechanistic studies illustrated the origin of selectivity in the key [4 + 2] cycloaddition as well as the inhibition of reaction pathway bifurcation via desymmetrization. The chemical proteomics results showed that a pair of enantiomers shared common targets (PRDX5 C100 and BLMH C73) and had unique targets (USP45 C588 for 4 and COG7 C419 for 9). This work provides experimental evidence for the discovery of unprecedented cadinane dimers from selective Diels-Alder reaction and a powerful strategy to explore the biological properties of natural products.

2.
Angew Chem Int Ed Engl ; 62(37): e202306501, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37365143

RESUMO

A palladium-catalyzed reductive difluorocarbene transfer reaction that tames difluorocarbene to couple with two electrophiles has been developed, representing a new mode of difluorocarbene transfer reaction. The approach uses low-cost and bulk industrial chemical chlorodifluoromethane (ClCF2 H) as the difluorocarbene precursor. It produces a variety of difluoromethylated (hetero)arenes from widely available aryl halides/triflates and proton sources, featuring high functional group tolerance and synthetic convenience without preparing organometallic reagents. Experimental mechanistic studies reveal that an unexpected Pd0/II catalytic cycle is involved in this reductive reaction, wherein the oxidative addition of palladium(0) difluorocarbene ([Pd0 (Ln )]=CF2 ) with aryl electrophile to generate the key intermediate aryldifluoromethylpalladium [ArCF2 Pd(Ln )X], followed by reaction with hydroquinone, is responsible for the reductive difluorocarbene transfer.

3.
J Am Chem Soc ; 144(31): 14288-14296, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895322

RESUMO

The application of abundant and inexpensive fluorine feedstock sources to synthesize fluorinated compounds is an appealing yet underexplored strategy. Here, we report a photocatalytic radical hydrodifluoromethylation of unactivated alkenes with an inexpensive industrial chemical, chlorodifluoromethane (ClCF2H, Freon-22). This protocol is realized by merging tertiary amine-ligated boryl radical-induced halogen atom transfer (XAT) with organophotoredox catalysis under blue light irradiation. A broad scope of readily accessible alkenes featuring a variety of functional groups and drug and natural product moieties could be selectively difluoromethylated with good efficiency in a metal-free manner. Combined experimental and computational studies suggest that the key XAT process of ClCF2H is both thermodynamically and kinetically favored over the hydrogen atom transfer pathway owing to the formation of a strong boron-chlorine (B-Cl) bond and the low-lying antibonding orbital of the carbon-chlorine (C-Cl) bond.


Assuntos
Alcenos , Boranos , Alcenos/química , Aminas , Cloro , Clorofluorcarbonetos , Clorofluorcarbonetos de Metano , Halogênios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...