Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1072: 207-211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30178347

RESUMO

Under pathological conditions like inflammation, ischemia or in solid tumors, parameters of the microenvironment like local oxygenation and extracellular pH show marked changes when compared to healthy tissue. The altered microenvironment affects cellular phenotype of omnipresent fibroblasts and immune cells. Recently, the impact of the microenvironment on the expression patterns of microRNAs, small non-coding RNAs that regulate gene expression on a post-transcriptional level, was discussed. Therefore, microRNAs might be the link between altered microenvironmental parameters and changes in cellular phenotype. In this study, the effect of hypoxia-induced extracellular acidosis (24 h pH 6.6) on microRNA expression in fibroblasts and macrophages was analyzed. MicroRNAs in rat fibroblasts (NRK-49F) were examined with the miScript miRNA PCR Array and changes in the expression validated by TaqMan qPCR. Subsequently, the identified microRNAs were analyzed in RAW 264.7 mouse macrophages. Nine out of 84 tested microRNAs were found to be acidosis-regulated in fibroblasts by miRNA PCR array, most of them up-regulated. Of those, the pH dependency could be validated by TaqMan qPCR for five of these nine microRNAs. When comparing these microRNAs in terms of their expression in macrophages, profound differences were observed. Thus, acidosis-induced alterations in the expression of microRNAs seem to be cell-type specific. Only the up-regulation of the miR-133b by low pH was seen in all normal cells, but not in tumor cells. As the identified microRNAs are involved in the regulation of proliferation, cell death and migration (amongst others), acidosis-induced changes in their expression might affect cellular behavior of fibroblasts and macrophages under pathological conditions. For instance the proto-oncogene c-Jun, which is a target of the miR-133b, was shown to be acidosis-regulated. Acidosis could regulate the biological behavior via miRNA-133b and c-Jun.


Assuntos
Acidose/metabolismo , Hipóxia Celular/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , MicroRNAs/biossíntese , Animais , Camundongos , Células RAW 264.7 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...