Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(5): e1010518, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584193

RESUMO

The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Glicoproteínas , Coelhos
2.
Biochemistry ; 60(11): 825-846, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705117

RESUMO

Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Modelos Biológicos , Polissacarídeos/imunologia
3.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229516

RESUMO

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Assuntos
Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Epitopos/genética , Epitopos/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/patogenicidade , Mutação/genética , Mutação/imunologia , Proteínas do Envelope Viral , Vacinas Virais/genética , Vacinas Virais/imunologia
4.
Genome Biol Evol ; 11(9): 2574-2592, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504490

RESUMO

Immunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placental development. To comprehensively study the molecular evolution of these galectins, both across mammals and within humans, we conducted a series of between- and within-species evolutionary analyses. By examining patterns of sequence evolution between species, we found that primate-specific galectins showed uniformly high substitution rates, whereas two of the four other galectins experienced accelerated evolution in primates. By examining human population genomic variation, we found that galectin genes and variants, including variants previously linked to immune diseases, showed signatures of recent positive selection in specific human populations. By examining one nonsynonymous variant in Galectin-8 previously associated with autoimmune diseases, we further discovered that it is tightly linked to three other nonsynonymous variants; surprisingly, the global frequency of this four-variant haplotype is ∼50%. To begin understanding the impact of this major haplotype on Galectin-8 protein structure, we modeled its 3D protein structure and found that it differed substantially from the reference protein structure. These results suggest that placentally expressed galectins experienced both ancient and more recent selection in a lineage- and population-specific manner. Furthermore, our discovery that the major Galectin-8 haplotype is structurally distinct from and more commonly found than the reference haplotype illustrates the significance of understanding the evolutionary processes that sculpted variants associated with human genetic disease.


Assuntos
Eutérios/genética , Evolução Molecular , Galectinas/genética , Placenta/metabolismo , Animais , Evolução Biológica , Feminino , Galectinas/química , Galectinas/metabolismo , Haplótipos , Humanos , Modelos Moleculares , Filogenia , Polimorfismo de Nucleotídeo Único , Gravidez , Seleção Genética
5.
Cell Host Microbe ; 23(1): 101-109.e4, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29324225

RESUMO

Since their first identification 50 years ago, marburgviruses have emerged several times, with 83%-90% lethality in the largest outbreaks. Although no vaccines or therapeutics are available for human use, the human antibody MR191 provides complete protection in non-human primates when delivered several days after inoculation of a lethal marburgvirus dose. The detailed neutralization mechanism of MR191 remains outstanding. Here we present a 3.2 Å crystal structure of MR191 complexed with a trimeric marburgvirus surface glycoprotein (GP). MR191 neutralizes by occupying the conserved receptor-binding site and competing with the host receptor Niemann-Pick C1. The structure illuminates previously disordered regions of GP including the stalk, fusion loop, CX6CC switch, and an N-terminal region of GP2 that wraps about the outside of GP1 to anchor a marburgvirus-specific "wing" antibody epitope. Virus escape mutations mapped far outside the MR191 receptor-binding site footprint suggest a role for these other regions in the GP quaternary structure.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Marburgvirus/imunologia , Receptores Virais/imunologia , Receptores Virais/ultraestrutura , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Agrobacterium tumefaciens , Animais , Anticorpos Monoclonais/ultraestrutura , Sítios de Ligação/imunologia , Proteínas de Transporte/imunologia , Linhagem Celular , Chlorocebus aethiops , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Marburgvirus/metabolismo , Glicoproteínas de Membrana/imunologia , Proteína C1 de Niemann-Pick , Nicotiana , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Ligação Viral
6.
Structure ; 25(12): 1820-1828.e2, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29153506

RESUMO

An atomic-detail model of the Marburg virus glycoprotein in complex with a neutralizing human monoclonal antibody designated MR78 was constructed using Phenix.Rosetta starting from a 3.6Å crystallographic density map. The Asp at T6 in the HCDR3's bulged torso cannot form the canonical salt bridge as position T2 lacks an Arg or Lys residue. It instead engages in a hydrogen bond interaction with a Tyr contributed by the HCDR1 loop. This inter-CDR loop interaction stabilizes the bulged conformation needed for binding to the viral glycoprotein: a Tyr to Phe mutant displays a binding affinity reduced by a factor of at least 10. We found that 5% of a database of 465 million human antibody sequences has the same residues at T2 and T6 positions in HCDR3 and Tyr in HCDR1 that could potentially form this Asp-Tyr interaction, and that this interaction might contribute to a non-canonical bulged torso conformation.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Proteínas do Envelope Viral/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas do Envelope Viral/imunologia
7.
Biochemistry ; 55(34): 4748-63, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27490953

RESUMO

Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987-2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable improvements include a substantially improved energy function, an XML-like language termed "RosettaScripts" for flexibly specifying modeling task, new analysis tools, the addition of the TopologyBroker to control conformational sampling, and support for multiple templates in comparative modeling. Rosetta's ability to model systems with symmetric proteins, membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved.


Assuntos
Modelos Moleculares , Software , Algoritmos , Biologia Computacional , Internet , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteínas/química , RNA/química , Interface Usuário-Computador
8.
J Phys Chem B ; 120(31): 7635-40, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27447548

RESUMO

Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic -OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic -OH group instead interacting with Pro139. Since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.


Assuntos
Peroxidase do Rábano Silvestre/metabolismo , Fenóis/metabolismo , Fenilpropionatos/metabolismo , Propionatos/metabolismo , Domínio Catalítico , Ácidos Cumáricos , Peroxidase do Rábano Silvestre/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredução , Fenóis/química , Fenilalanina/química , Fenilalanina/metabolismo , Fenilpropionatos/química , Propionatos/química , Prótons , Termodinâmica , Água/química
9.
Structure ; 22(9): 1287-1300, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25132082

RESUMO

D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy (5)S1 conformation; this may explain the apparent high KM for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni(2+) cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism.


Assuntos
Aldose-Cetose Isomerases/química , Arabinose/química , Proteínas de Bactérias/química , Biocatálise , Cádmio/química , Cristalografia por Raios X , Magnésio/química , Simulação de Dinâmica Molecular , Ligação Proteica , Estereoisomerismo , Streptomyces/enzimologia , Termodinâmica
10.
J Phys Chem B ; 118(1): 164-70, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24341896

RESUMO

Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic, and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) subunits. It is known that increasing the relative abundance of H subunits results in lower molecular weight lignin polymers and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di-, and trilignols, calculated using density functional theory, which points to a requirement of strong p-electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages (ß-ß or ß-5) react poorly and tend to "cap" the polymer. In general, ß-5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.


Assuntos
Lignina/síntese química , Lignina/química , Estrutura Molecular , Polimerização , Teoria Quântica
11.
Biotechnol Biofuels ; 5(1): 71, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998926

RESUMO

BACKGROUND: Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. RESULTS: GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. CONCLUSIONS: Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl alcohol, and related precursors and products; the accumulation of which suggests altered metabolism of 5-hydroxyconiferyl alcohol in switchgrass. Given that there was no indication that iso-sinapyl alcohol was integrated in cell walls, it is considered a monolignol analog. Diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are together associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth. However, iso-sinapyl alcohol and iso-sinapic acid, added separately to media, were not inhibitory to C. thermocellum cultures.

12.
J Phys Chem B ; 116(16): 4760-8, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22475051

RESUMO

Lignin is a complex, heterogeneous polymer in plant cell walls that provides mechanical strength to the plant stem and confers resistance to degrading microbes, enzymes, and chemicals. Lignin synthesis initiates through oxidative radical-radical coupling of monolignols, the most common of which are p-coumaryl, coniferyl, and sinapyl alcohols. Here, we use density functional theory to characterize radical-radical coupling reactions involved in monolignol dimerization. We compute reaction enthalpies for the initial self- and cross-coupling reactions of these monolignol radicals to form dimeric intermediates via six major linkages observed in natural lignin. The 8-O-4, 8-8, and 8-5 coupling are computed to be the most favorable, whereas the 5-O-4, 5-5, and 8-1 linkages are less favorable. Overall, p-coumaryl self- and cross-coupling reactions are calculated to be the most favorable. For cross-coupling reactions, in which each radical can couple via either of the two sites involved in dimer formation, the more reactive of the two radicals is found to undergo coupling at its site with the highest spin density.


Assuntos
Lignina/síntese química , Teoria Quântica , Radicais Livres/síntese química , Radicais Livres/química , Lignina/química , Estrutura Molecular
13.
J Phys Chem B ; 114(50): 16908-17, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21114309

RESUMO

A coarse-grained model of the action of a chaperonin cage of tunable hydrophobicity, h, upon a protein with the possibility of misfolding is studied with inherent structure (IS) analysis and statistical temperature molecular dynamics (STMD) simulation. Near the folding temperature, the equilibrium properties of the system may be understood in terms of <10 IS. The known phenomenon of an optimal cage hydrophobicity for productive folding, found at h = 0.25, is seen to arise from a striking suppression of the occupations of IS in the misfolding funnel, which in turn arises from a decrease in translational entropy due to confinement to the region of the cage wall. The kinetics of folding is correspondingly fastest at h = 0.25, where a minimum is found in the h-dependent barrier height. While true kinetics is determined by conventional MD, it is shown that the accelerated dynamics of STMD provide a valuable quantitative perspective.


Assuntos
Chaperoninas/química , Dobramento de Proteína , Algoritmos , Entropia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Proteínas/química , Temperatura
14.
J Phys Chem B ; 113(48): 15886-94, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19902909

RESUMO

It is shown that the folding of a C(alpha) model of chymotyprsin inhibitor (CI2) protein cannot be described by either diffusion (Smoluchowski equation, SE) or a normal-diffusion continuous time random walk of a single order parameter under the influence of the thermodynamic force. The reason for these failures is that the order parameter follows subdiffusion. A theory is proposed based on the idea that an ordinary SE holds along a contour representative of the folding pathways, and that displacements along the contour obey a fractal relationship to, and are longer than, those along the reaction coordinate defined by the order parameter. With a new, constraint-free method to determine the order-parameter-dependent diffusion constant, and statistical temperature molecular dynamics (STMD) enhanced sampling of the free energy, the fractal SE theory is completely characterized by short-time simulations, and its predictions are in quantitative agreement with simulated long-time folding dynamics. Thus, the fractal SE may serve as an accelerated algorithm to study the folding of proteins too slow to be simulated directly.


Assuntos
Peptídeos/química , Proteínas de Plantas/química , Dobramento de Proteína , Simulação por Computador , Difusão , Modelos Químicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...