Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAGMA ; 37(3): 465-475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758489

RESUMO

OBJECTIVE: This study investigated the feasibility of using deep learning-based super-resolution (DL-SR) technique on low-resolution (LR) images to generate high-resolution (HR) MR images with the aim of scan time reduction. The efficacy of DL-SR was also assessed through the application of brain volume measurement (BVM). MATERIALS AND METHODS: In vivo brain images acquired with 3D-T1W from various MRI scanners were utilized. For model training, LR images were generated by downsampling the original 1 mm-2 mm isotropic resolution images. Pairs of LR and HR images were used for training 3D residual dense net (RDN). For model testing, actual scanned 2 mm isotropic resolution 3D-T1W images with one-minute scan time were used. Normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used for model evaluation. The evaluation also included brain volume measurement, with assessments of subcortical brain regions. RESULTS: The results showed that DL-SR model improved the quality of LR images compared with cubic interpolation, as indicated by NRMSE (24.22% vs 30.13%), PSNR (26.19 vs 24.65), and SSIM (0.96 vs 0.95). For volumetric assessments, there were no significant differences between DL-SR and actual HR images (p > 0.05, Pearson's correlation > 0.90) at seven subcortical regions. DISCUSSION: The combination of LR MRI and DL-SR enables addressing prolonged scan time in 3D MRI scans while providing sufficient image quality without affecting brain volume measurement.


Assuntos
Encéfalo , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Estudos de Viabilidade , Masculino , Feminino , Algoritmos , Adulto , Tamanho do Órgão
2.
MAGMA ; 37(2): 283-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386154

RESUMO

PURPOSE: Propeller fast-spin-echo diffusion magnetic resonance imaging (FSE-dMRI) is essential for the diagnosis of Cholesteatoma. However, at clinical 1.5 T MRI, its signal-to-noise ratio (SNR) remains relatively low. To gain sufficient SNR, signal averaging (number of excitations, NEX) is usually used with the cost of prolonged scan time. In this work, we leveraged the benefits of Locally Low Rank (LLR) constrained reconstruction to enhance the SNR. Furthermore, we enhanced both the speed and SNR by employing Convolutional Neural Networks (CNNs) for the accelerated PROPELLER FSE-dMRI on a 1.5 T clinical scanner. METHODS: Residual U-Net (RU-Net) was found to be efficient for propeller FSE-dMRI data. It was trained to predict 2-NEX images obtained by Locally Low Rank (LLR) constrained reconstruction and used 1-NEX images obtained via simplified reconstruction as the inputs. The brain scans from healthy volunteers and patients with cholesteatoma were performed for model training and testing. The performance of trained networks was evaluated with normalized root-mean-square-error (NRMSE), structural similarity index measure (SSIM), and peak SNR (PSNR). RESULTS: For 4 × under-sampled with 7 blades data, online reconstruction appears to provide suboptimal images-some small details are missing due to high noise interferences. Offline LLR enables suppression of noises and discovering some small structures. RU-Net demonstrated further improvement compared to LLR by increasing 18.87% of PSNR, 2.11% of SSIM, and reducing 53.84% of NRMSE. Moreover, RU-Net is about 1500 × faster than LLR (0.03 vs. 47.59 s/slice). CONCLUSION: The LLR remarkably enhances the SNR compared to online reconstruction. Moreover, RU-Net improves propeller FSE-dMRI as reflected in PSNR, SSIM, and NRMSE. It requires only 1-NEX data, which allows a 2 × scan time reduction. In addition, its speed is approximately 1500 times faster than that of LLR-constrained reconstruction.


Assuntos
Colesteatoma , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
3.
MAGMA ; 34(6): 915-927, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34181119

RESUMO

OBJECTIVE: Scan time reduction is necessary for volumetric acquisitions to improve workflow productivity and to reduce motion artifacts during MRI procedures. We explored the possibility that Compressed Sensing-4 (CS-4) can be employed with 3D-turbo-field-echo T1-weighted (3D-TFE-T1W) sequence without compromising subcortical measurements on clinical 1.5 T MRI. MATERIALS AND METHODS: Thirty-three healthy volunteers (24 females, 9 males) underwent imaging scans on a 1.5 T MRI equipped with a 12-channel head coil. 3D-TFE-T1W for whole-brain coverage was performed with different acceleration factors, including SENSE-2, SENSE-4, CS-4. Freesurfer, FSL's FIRST, and volBrain packages were utilized for subcortical segmentation. All processed data were assessed using the Wilcoxon signed-rank test. RESULTS: The results obtained from SENSE-2 were considered as references. For SENSE-4, the maximum signal-to-noise ratio (SNR) drop was detected in the Accumbens (51.96%). For CS-4, the maximum SNR drop was detected in the Amygdala (10.55%). Since the SNR drop in CS-4 is relatively small, the SNR in all of the subcortical volumes obtained from SENSE-2 and CS-4 are not statistically different (P > 0.05), and their Pearson's correlation coefficients are larger than 0.90. The maximum biases of SENSE-4 and CS-4 were found in the Thalamus with the mean of differences of 1.60 ml and 0.18 ml, respectively. CONCLUSION: CS-4 provided sufficient quality of 3D-TFE-T1W images for 1.5 T MRI equipped with a 12-channel receiver coil. Subcortical volumes obtained from the CS-4 images are consistent among different post-processing packages.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional , Masculino , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA