Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(22): 15114-15120, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207094

RESUMO

Interleukin-6 (IL-6) is a cytokine with wide-ranging biological effects, playing an important role on the immune system and inflammatory responses. Therefore, it is important to develop alternative, highly sensitive and reliable analytical methodologies for the accurate detection of this biomarker in biological fluids. Graphene substrates (GS), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown great benefits for biosensing and in the development of novel biosensor devices. In this work, we present a proof of concept for the development of a new analytical platform for the specific recognition of human interleukin-6, that is based on the coffee-ring formation of monoclonal antibodies of interleukin-6 (mabIL-6) onto amine functionalized GS. The prepared GS/mabIL-6/IL-6 systems were successfully used to show that IL-6 was specifically and selectively adsorbed onto the area of the mabIL-6 coffee-ring. Raman imaging was confirmed as a versatile tool to investigate different antigen-antibody interactions and their surface distribution. This experimental approach can be used to develop a wide variety of substrates for antigen-antibody interaction allowing the specific detection of an analyte in a complex matrix.

2.
Analyst ; 148(8): 1848-1857, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939184

RESUMO

The early detection of Parkinson's disease (PD) can significantly improve treatment and quality of life in patients. 5-S-Cysteinyl-dopamine (CDA) is a key metabolite of high relevance for the early detection of PD. Therefore, its sensitive detection with fast and robust methods can improve its use as a biomarker. In this work we show the potentialities of label-free SERS spectroscopy in detecting CDA in aqueous solutions and artificial biofluids, with a simple, fast and sensitive approach. We present a detailed experimental SERS band assignment of CDA employing silver nanoparticle (AgNP) substrates in aqueous media, which was supported by theoretical calculations and simulated Raman and SERS spectra. The tentative orientation of CDA over the AgNP was also studied, indicating that catechol and carboxylic acid play a key role in the metallic surface adsorption. Moreover, we showed that SERS can allow us to identify CDA in aqueous media at low concentration, leading to the identification of some of its characteristic bands in pure water and in synthetic cerebrospinal fluid (SCSF) below 1 × 10-8 M, while its band identification in simulated urine (SUR) can be reached at 1 × 10-7 M. In conclusion, we show that CDA can be suitably detected by means of label-free SERS spectroscopy, which can significantly improve its sensitive detection for further analytical studies as a novel biomarker and further clinical diagnosis in PD patients.


Assuntos
Nanopartículas Metálicas , Doença de Parkinson , Humanos , Dopamina , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Qualidade de Vida , Prata/química , Água , Biomarcadores
3.
Biosensors (Basel) ; 12(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448304

RESUMO

Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Biomarcadores , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Doença Crônica , Técnicas Eletroquímicas/métodos , Grafite/química , Humanos
4.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161907

RESUMO

The morphological analysis of patterns in dried droplets has allowed the generation of efficient techniques for the detection of molecules of medical interest. However, the effectiveness of this method to reveal the coexistence of macromolecules of the same species, but different conformational states, is still unknown. To address this problem, we present an experimental study on pattern formation in dried droplets of bovine serum albumin (BSA), in folded and unfolded conformational states, in saline solution (NaCl). Folded proteins produce a well-defined coffee ring and crystal patterns all over the dry droplet. Depending on the NaCl concentration, the crystals can be small, large, elongated, entangled, or dense. Optical microscopy reveals that the relative concentration of unfolded proteins determines the morphological characteristics of deposits. At a low relative concentration of unfolded proteins (above 2%), small amorphous aggregates emerge in the deposits, while at high concentrations (above 16%), the "eye-like pattern", a large aggregate surrounded by a uniform coating, is produced. The radial intensity profile, the mean pixel intensity, and the entropy make it possible to characterize the patterns in dried droplets. We prove that it is possible to achieve 100% accuracy in identifying 4% of unfolded BSA contained in a protein solution.


Assuntos
Soroalbumina Bovina , Cloreto de Sódio
5.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35162005

RESUMO

In this research, a compact electronic nose (e-nose) based on a shear horizontal surface acoustic wave (SH-SAW) sensor array is proposed for the NO2 detection, classification and discrimination among some of the most relevant surrounding toxic chemicals, such as carbon monoxide (CO), ammonia (NH3), benzene (C6H6) and acetone (C3H6O). Carbon-based nanostructured materials (CBNm), such as mesoporous carbon (MC), reduced graphene oxide (rGO), graphene oxide (GO) and polydopamine/reduced graphene oxide (PDA/rGO) are deposited as a sensitive layer with controlled spray and Langmuir-Blodgett techniques. We show the potential of the mass loading and elastic effects of the CBNm to enhance the detection, the classification and the discrimination of NO2 among different gases by using Machine Learning (ML) techniques (e.g., PCA, LDA and KNN). The small dimensions and low cost make this analytical system a promising candidate for the on-site discrimination of sub-ppm NO2.


Assuntos
Nariz Eletrônico , Nanoestruturas , Amônia , Gases , Dióxido de Nitrogênio
6.
Phys Chem Chem Phys ; 23(21): 12158-12170, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008659

RESUMO

Dopamine (DA) regulates several functions in the central nervous system and its depletion is responsible for psychological disorders like Parkinson's disease. Several analytical approaches have been presented for DA detection in pathological diagnosis. SERS spectroscopy is a highly promising technique for the sensitive detection of DA. However, an improvement in its detection in aqueous solution is highly desirable for reliable quantification in biological fluids. In this work, we explored a label-free SERS approach for DA detection, employing two conventional methods to synthesize Ag colloids: reduction via citrates (c-AgNPs) and reduction via hydroxylamine (h-AgNPs), and SERS measurements were performed with a laser at 488 nm wavelength. Under these conditions, DA was identified through reproducible SERS spectra in the c-AgNP medium; however, the SERS spectra of DA in h-AgNP solution showed a completely different SERS profile. SERS band analysis revealed that DA in h-AgNPs was oxidized and converted into polydopamine (PDA), which was triggered after exposure to laser radiation. DA oxidation and PDA formation were followed over time through the SERS band profile at pH 7, 9 and 12. We found that in situ PDA formation started after 50 min of laser irradiation of DA at pH 7, while DA was quickly oxidized at pH 9 and 12. Here, we present a detailed SERS band analysis of PDA, which sheds light on the molecular steps in the pathway formation of the PDA structure. Spectroscopic analysis and characterization revealed that a long laser exposure time led to the formation of stable PDA complexes with AgNPs, which allowed us to propose a novel approach for synthesis of AgNP-PDA composites. In conclusion, to detect DA through a label-free SERS approach, c-AgNPs must be employed, while stable AgNP-PDA materials can be achieved with h-AgNPs and 488 nm laser excitation.


Assuntos
Dopamina/química , Dopamina/síntese química , Nanopartículas Metálicas/química , Prata/química , Estrutura Molecular , Polimerização , Análise Espectral Raman , Propriedades de Superfície
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119020, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33075704

RESUMO

Graphenic substrates (GS), such as reduced graphene oxide (rGO) and graphene oxide (GO), are 2D materials known for their unique physicochemical properties such as their ability to enhance vibrational spectroscopic signals and quench the fluorescence of adsorbed molecules. These properties provide an opportunity to develop nanostructured GS-based systems for detecting and identifying different analytes with high sensitivity and reliability through molecular spectroscopic techniques. This work evaluated the capacities of different GS to interact with a highly fluorescent compound, thereby changing its optical emission response (fluorescence quenching) and amplifying its vibrational signal, which is the base of graphene-enhanced Raman scattering (GERS). To test these properties, we used a derivative of highly fluorescent BODIPY (BP) compounds, which cover a wide range of applications from solar energy conversion to photodynamic cancer therapy. GS prepared by using the Langmuir-Blodgett (LB) technique allowed us to quench the fluorescence emission of BP and improve its Raman spectroscopy detection limit due to the GERS effect. These results were interpreted in light of the π-π interactions taking place between the Csp2 domains of GS and the aromatic core of the BP fluorophore.

8.
J Agric Food Chem ; 67(33): 9241-9253, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31369258

RESUMO

Antiviral compounds targeting viral replicative processes have been studied as an alternative for the control of begomoviruses. Previously, we have reported that the peptide AmPep1 has strong affinity binding to the replication origin sequence of tomato yellow leaf curl virus (TYLCV). In this study, we describe the mechanism of action of this peptide as a novel alternative for control of plant-infecting DNA viruses. When AmPep1 was applied exogenously to tomato and Nicotiana benthamiana plants infected with TYLCV, a decrease in the synthesis of the two viral DNA strands (CS and VS) was observed, with a consequent delay in the development of disease progress in treated plants. The chemical mechanism of action of AmPep1 was deduced using Raman spectroscopy and molecular modeling showing the formation of chemical interactions such as H bonds and electrostatic interactions and the formation of π-π interactions between both biomolecules contributing to tampering with the viral replication.


Assuntos
Amaranthus/química , Antivirais/química , Antivirais/farmacologia , Begomovirus/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , RNA Viral/química , Replicação Viral/efeitos dos fármacos , Begomovirus/química , Begomovirus/genética , Begomovirus/fisiologia , Sequências Repetidas Invertidas/efeitos dos fármacos , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/química , RNA Viral/genética , Nicotiana/virologia
9.
Neurochem Int ; 129: 104514, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31369776

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and is characterized for being an idiopathic and multifactorial disease. Extensive research has been conducted to explain the origin of the disease, but it still remains elusive. It is well known that dopamine oxidation, through the endogenous formation of toxic metabolites, is a key process in the activation of a cascade of molecular events that leads to cellular death in the hallmark of PD. Thio-catecholamines, such as 5-S-cysteinyl-dopamine, 5-S-glutathionyl-dopamine and derived benzothiazines, are endogenous metabolites formed in the dopamine oxidative degradation pathway. Those metabolites have been shown to be highly toxic to neurons in the substantia nigra pars compacta, activating molecular mechanisms that ultimately lead to neuronal death. In this review we describe the origin, formation and the toxic effects of 5-S-cysteinyl-dopamine and its oxidative derivatives that cause death to dopaminergic neurons. Furthermore, we correlate the formation of those metabolites with the neurodegeneration progress in PD. In addition, we present the reported neuroprotective strategies of products that protect against the cellular damage of those thio-catecholamines. Finally, we discuss the advantages in the use of 5-S-cysteinyl-dopamine as a potential biomarker for PD.


Assuntos
Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Biomarcadores , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Estresse do Retículo Endoplasmático , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Enxofre/metabolismo , alfa-Sinucleína/metabolismo
10.
RSC Adv ; 9(22): 12269-12275, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35515877

RESUMO

Recombinant human interleukin-6 (IL-6) is a key cytokine that plays an important role in the immune system and inflammatory response, explaining why any modification of its concentration in biological fluids is considered a signal of a pathological condition. Therefore, it is important to develop alternative, highly sensitive and reliable analytical methodologies to detect and identify this analyte in biological fluids. Herein, we present a proof of concept for the development of a new analytical hybrid platform for IL-6 detection that is based on the combination of drop-coating deposition Raman (DCDR) spectroscopy and graphene-enhanced Raman spectroscopy (GERS) effects. The sensitivity limits for IL-6 detection were found to be a function of the type of substrate used. When a 1 µL droplet of IL-6 solution is deposited and dried on an Si substrate, a DCDR effect occurs, and a detection limit below 1 ng mL-1 is obtained; however, when the same is performed using a hybrid substrate of reduced graphene oxide and silicon (rGO/Si), the joint action of DCDR and GERS effects results in a detection limit well below 1 pg mL-1. It is important to note that this result implies the absolute mass detection of 1 fg of IL-6. In summary, the Raman spectroscopy DCDR/GERS analytical platform proposed here allows the reliable identification of, as well as the very sensitive detection of, IL-6 and promises to improve the performance of clinical evaluations of this biomarker that are currently in use. In this study, the Raman spectra of IL-6 in powder and solution, together with the corresponding band assignment, are presented for the first time in the literature.

11.
Biosensors (Basel) ; 9(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587840

RESUMO

In the present work, a novel, portable and innovative eNose composed of a surface acoustic wave (SAW) sensor array based on zeolitic imidazolate frameworks, ZIF-8 and ZIF-67 nanocrystals (pure and combined with gold nanoparticles), as sensitive layers has been tested as a non-invasive system to detect different disease markers, such as acetone, ethanol and ammonia, related to the diagnosis and control of diabetes mellitus through exhaled breath. The sensors have been prepared by spin coating, achieving continuous sensitive layers at the surface of the SAW device. Low concentrations (5 ppm, 10 ppm and 25 ppm) of the marker analytes were measured, obtaining high sensitivities, good reproducibility, short time response and fast signal recovery.


Assuntos
Testes Respiratórios , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Nariz Eletrônico , Nanopartículas/química , Som , Zeolitas/química , Acetona/análise , Amônia/análise , Biomarcadores/análise , Etanol/análise , Humanos , Sensibilidade e Especificidade , Propriedades de Superfície
12.
Front Mol Neurosci ; 10: 137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588448

RESUMO

The aim of this work was to study the effect of oxidative stress on the structural changes of the secondary peptide structure of amyloid beta 1-42 (Aß 1-42), in the dentate gyrus of hippocampus of rats exposed to low doses of ozone. The animals were exposed to ozone-free air (control group) and 0.25 ppm ozone during 7, 15, 30, 60, and 90 days, respectively. The samples were studied by: (1) Raman spectroscopy to detect the global conformational changes in peptides with α-helix and ß-sheet secondary structure, following the deconvolution profile of the amide I band; and (2) immunohistochemistry against Aß 1-42. The results of the deconvolutions of the amide I band indicate that, ozone exposure causes a progressively decrease in the abundance percentage of α-helix secondary structure. Furthermore, the ß-sheet secondary structure increases its abundance percentage. After 60 days of ozone exposure, the ß-sheet band is identified in a similar wavenumber of the Aß 1-42 peptide standard. Immunohistochemistry assays show an increase of Aß 1-42 immunoreactivity, coinciding with the conformational changes observed in the Raman spectroscopy of Aß 1-42 at 60 and 90 days. In conclusion, oxidative stress produces changes in the folding process of amyloid beta peptide structure in the dentate gyrus, leading to its conformational change in a final ß-sheet structure. This is associated to an increase in Aß 1-42 expression, similar to the one that happens in the brain of Alzheimer's Disease (AD) patients.

13.
Biotechnol Bioeng ; 104(5): 871-81, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19655393

RESUMO

The structural characteristics and predefined constant size and shape of viral assemblies make them useful tools for nanobiotechnology, in particular as scaffolds for constructing highly organized novel nanomaterials. In this work it is shown for the first time that nanotubes formed by recombinant rotavirus VP6 protein can be used as scaffolds for the synthesis of hybrid nanocomposites. Rotavirus VP6 was produced by the insect cell-baculovirus expression vector system. Nanotubes of several micrometers in length and various diameters in the nanometer range were functionalized with Ag, Au, Pt, and Pd through strong (sodium borohydride) or mild (sodium citrate) chemical reduction. The nanocomposites obtained were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM) with energy dispersive spectroscopy (EDS), dynamic light scattering, and their characteristic plasmon resonance. The outer surface of VP6 nanotubes had intrinsic affinity to metal deposition that allowed in situ synthesis of nanoparticles. Furthermore, the use of preassembled recombinant protein structures resulted in highly ordered integrated materials. It was possible to obtain different extents and characteristics of the metal coverage by manipulating the reaction conditions. TEM revealed either a continuous coverage with an electrodense thin film when using sodium citrate as reductant or a discrete coverage with well-dispersed metal nanoparticles of diameters between 2 and 9 nm when using sodium borohydride and short reaction times. At long reaction times and using sodium borohydride, the metal nanoparticles coalesced and resulted in a thick metal layer. HRTEM-EDS confirmed the identity of the metal nanoparticles. Compared to other non-recombinant viral scaffolds used until now, the recombinant VP6 nanotubes employed here have important advantages, including a longer axial dimension, a dynamic multifunctional hollow structure, and the possibility of producing them massively by a safe and efficient bioprocess. Such characteristics confer important potential applications in nanotechnology to the novel nanobiomaterials produced here.


Assuntos
Antígenos Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Metais/metabolismo , Nanotubos/química , Animais , Baculoviridae/genética , Linhagem Celular , Vetores Genéticos , Microscopia Eletrônica de Transmissão , Nanotubos/ultraestrutura , Oxirredução , Ligação Proteica , Proteínas Recombinantes/metabolismo , Espectrometria por Raios X , Análise Espectral Raman , Spodoptera , Ressonância de Plasmônio de Superfície
14.
Environ Technol ; 30(3): 269-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19438059

RESUMO

The rice hull ash is composed by 94% of SiO2, an agricultural waste that can be recovered and purified by a depolymerization reaction yielding an organo-silicic gel. The purpose of this paper is to show that this silica can be used to fix Cd2+ from aqueous solution. The pH of hydrolysis of the organo-silicic gel is the main factor modifying the distribution between the solid and the solution. The contact time between the Cd2+ solution and the solid was studied to optimize the sorption conditions. The equilibrium measurements were performed after 40 hours at room temperature. The competition with Ca2+ ions in the solutions was also studied in order to evaluate the selectivity of the Cd2+ fixation. It was found that the rice hull ash has a higher capacity to fix Cd2+ than the rice hull derivatives.


Assuntos
Cádmio/química , Cálcio/química , Oryza/química , Dióxido de Silício/química , Adsorção , Concentração de Íons de Hidrogênio , Hidrólise , Fatores de Tempo , Eliminação de Resíduos Líquidos , Água/química , Poluentes Químicos da Água/química
15.
Inorg Chem ; 45(8): 3408-14, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-16602801

RESUMO

As shown recently, the networks of mesoporous high-surface-area silicates and zeolites undergo a deep depolymerization process in glycerol, near 200 degrees C. Within 1 h, X-ray diffraction analysis amorphous gels are obtained. However, some local ordering subsists as demonstrated by a striking similarity between the silicon and aluminum high-resolution solid-state NMR spectra before and after the reaction. The residual organization could be investigated indirectly in studying the recrystallization of these gels in the presence or absence of structure-directing agents. Were this attempt successful, the way should be opened for the synthesis of molecular sieves starting from gels obtained from naturally occurring zeolites. Here, it will be shown that an amorphous gel obtained from HZSM-5 recovers the initial long-range structure of the parent material in a few hours at 85 degrees C in the presence of an aqueous solution of tetrapropyl ammonium (TPA) or NH3. The recrystallization of HY requires the presence of tetramethylammonium, but about 25% of the crystallization is obtained rapidly (approximately = 1 day) at 80 degrees C with ammonia. Hypotheses about the preorganized structural units are presented. The value of the Si-O-Si angle in the silica cluster seems to be of paramount importance.

16.
J Phys Chem B ; 110(17): 8559-65, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640406

RESUMO

It is shown that adsorption of the [Au(en)(2)](3+) cationic complex can be successfully employed for the deposition of gold nanoparticles (1.5 to 3 nm) onto SiO(2) with high metal loading, good dispersion, and small Au particle size. When the solution pH increases (from 3.8 to 10.5), the Au loading in the Au/SiO(2) samples increases proportionally (from 0.2 to 5.5 wt %), and the average gold particle size also increases (from 1.5 to 2.4 nm). These effects are explained by the increase in the amount of negatively charged sites present on the SiO(2) surface, namely, when the solution pH increases, a higher number of [Au(en)(2)](3+) species can be adsorbed. Extending the adsorption time from 2 to 16 h gives rise to an increase in the gold loading from 3.3 to 4.0 wt % and in the average particle size from 1.8 to 2.9 nm. Different morphologies of gold nanoparticles are present as a function of the particle size. Particles with a size of 3-5 nm show defective structure, some of them having a multiple twinning particle (MTP) structure. At the same time, nanoparticles with an average size of ca. 2 nm exhibit defect-free structure with well-distinguishable {111} family planes. TEM and HAADF observations revealed that Au particles do not agglomerate on the SiO(2) support: gold is present on the surface of SiO(2) only as small particles. Density functional theory calculations were employed to study the mechanisms of [Au(en)(2)](3+) adsorption, where neutral and negatively charged silica surfaces were simulated by neutral cluster Si(4)O(10)H(4) and negatively charged cluster Si(4)O(10)H(3), respectively. The calculation results are totally consistent with the suggestion that the deposition of gold takes place according to a cationic adsorption mechanism.


Assuntos
Ouro/química , Nanopartículas/química , Dióxido de Silício/química , Adsorção , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície , Temperatura
17.
Inorg Chem ; 44(23): 8486-94, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16270988

RESUMO

In glycerol, near 200 degrees C, the silicate networks of mesoporous silicates and zeolites undergo a deep depolymerization process. In a few hours, depending on the initial concentration of the solid in glycerol and on the temperature, amorphous gels are obtained. In these gels, a fraction of the Si-O-Si bonds are transformed into Si-O-C. The constitutional aluminum remains bound to the silica network in the gel. The short range ordering is maintained to some extent: the size of the smallest structural unit in gels obtained from zeolites is in the range of the cubic nanometer, nm3.

18.
J Colloid Interface Sci ; 291(1): 175-80, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16005011

RESUMO

One-step room-temperature synthesis of nanocrystalline Mn3O4 hausmannite, without heating posttreatment, was carried out from a simple dissolution of manganese(II) acetate in a mixture of N,N'-dimethylformamide (DMF) and water. Homogeneous nanocrystals like rods were obtained, with an average width and length of 6.6+/-1.2 nm and 17.4+/-4.1 nm, respectively, and a preferential growth along the 001 direction. Magnetization measurements on a powdered sample showed ferrimagnetic behavior at low temperatures. Under zero-field cooling (ZFC) measurement at 100 Oe, the observed blocking temperature (T(B)) was 37 K.

19.
J Phys Chem B ; 109(34): 16290-5, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16853071

RESUMO

Gold nanoparticles were deposited on the surface of multiwalled carbon nanotubes (MWNTs) functionalized with aliphatic bifunctional thiols (1,4-butanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, and 2-aminoethanethiol) through a direct solvent-free procedure. Small gold particles, with a narrow particle size distribution around 1.7 nm, were obtained on 1,6-hexanedithiol-functionalized MWNTs. For MWNTs functionalized with the aminothiol, the average Au particle size was larger, 5.5 nm, apparently due to a coalescence phenomenon. Gatan image filter (GIF) observations show that sulfur is at the nanotube surface with a non-homogeneous distribution. A higher sulfur concentration was observed around the gold nanoparticles' location.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...