Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 127(11): e2022JE007327, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36588803

RESUMO

This paper presents estimates of the water and chlorine contents in the subsurface of Gale crater based on the measurements by the Dynamic Albedo of Neutrons (DAN) instrument onboard the NASA Curiosity rover. It is Part 1 of a two-paper series. Data derived both from DAN active and passive measurements are presented in discrete surface areas (pixels) assuming a homogeneous distribution of water within the DAN sensing depth (60 cm) along the traverse of the rover. It is shown that the content of hydrogen, reported as Water Equivalent Hydrogen, varies between almost zero and a maximum of (6.1 ± 0.7) wt.%. The content of absorption equivalent chlorine varies between almost zero and (2.6 ± 0.2) wt.%. Such variations are thought to be related to the different geological processes and environmental conditions present in the strata along the traverse during the evolutionary history of Gale crater. The second paper (Part 2) studies particular properties of water and abundances of neutron absorbing elements at distinct geological regions, that the rover crossed on its way.

2.
Life Sci Space Res (Amst) ; 29: 53-62, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33888288

RESUMO

In April 2001, Mars Odyssey spacecraft with the High Energy Neutron Detector (HEND) onboard was launched to Mars. HEND/Odyssey was switched on measurement mode for most of transit to Mars to monitor variations of spacecraft background and solar activity. Although HEND/Odyssey was originally designed to measure Martian neutron albedo and to search for Martian subsurface water/water ice, its measurements during cruise phase to Mars are applicable to evaluate spacecraft ambient radiation background. The biological impact of the neutron component of this radiation background should be understood, as it must be taken into account in planning future human missions to Mars. We have modeled the spacecraft neutron spectral density and compared it with HEND measurements to estimate neutron dose equivalent rates during Odyssey cruise phase, which occurred during the maximum period of solar cycle 23. We find that the Odyssey ambient neutron environment during May - September 2001 yields 10.6 ± 2.0 µSv per day in the energy range from 0 to 15 MeV, and about 29 µSv per day when extrapolated to the 0-1000 MeV energy range during solar quiet time (intervals without Solar Particle Events, SPEs). We have also extrapolated HEND/Odyssey measurements to different periods of solar cycle and find that during solar minimum (maximum of GCR flux), the neutron dose equivalent rate during cruise to Mars could be as high as 52 µSv per day with the same shielding. These values are in good agreement with results reported for a similar measurement made with an instrument aboard the Mars Science Laboratory during its cruise to Mars in 2011-2012.


Assuntos
Radiação Cósmica , Marte , Monitoramento de Radiação , Meio Ambiente Extraterreno , Humanos , Nêutrons , Doses de Radiação , Atividade Solar , Astronave
3.
Astrobiology ; 17(6-7): 585-594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731818

RESUMO

This overview presents the physical principles, design, measurement capabilities, and summary of planned operations of the autonomous detector of radiation of neutrons onboard rover at Mars (ADRON-RM) on the surface of Mars. ADRON-RM is a Russian project selected for the joint European Space Agency-Roscosmos ExoMars 2020 landing mission. A compact passive neutron spectrometer, ADRON-RM, was designed to study the abundance and distribution of water and neutron absorption elements (such as Cl, Fe, and others) in the martian subsurface along the path of the ExoMars rover. Key Words: Mars exploration-Surface-Neutron Spectroscopy-Water. Astrobiology 17, 585-594.

4.
Icarus ; 255: 100-115, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798496

RESUMO

The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery.

5.
Science ; 334(6059): 1058-d, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22116866

RESUMO

Critical comments from Lawrence et al. are considered on the capability of the collimated neutron telescope Lunar Exploration Neutron Detector (LEND) on NASA's Lunar Reconnaissance Orbiter (LRO) for mapping lunar epithermal neutrons, as presented in our paper. We present two different analyses to show that our previous estimated count rates are valid and support the conclusions of that paper.


Assuntos
Lua
6.
Science ; 330(6003): 483-6, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20966247

RESUMO

Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon's south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources.


Assuntos
Lua , Meio Ambiente Extraterreno , Hidrogênio , Análise Espectral
7.
Astrobiology ; 8(4): 793-804, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18844457

RESUMO

The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.


Assuntos
Lua , Nêutrons , Temperatura Baixa , Desenho de Equipamento , Meio Ambiente Extraterreno , Hidrogênio , Gelo , Modelos Teóricos , Voo Espacial/instrumentação , Astronave/instrumentação , Estados Unidos , United States National Aeronautics and Space Administration
8.
Astrobiology ; 8(3): 605-12, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18598140

RESUMO

We present a summary of the physical principles and design of the Dynamic Albedo of Neutrons (DAN) instrument onboard NASA's 2009 Mars Science Laboratory (MSL) mission. The DAN instrument will use the method of neutron-neutron activation analysis in a space application to study the abundance and depth distribution of water in the martian subsurface along the path of the MSL rover.


Assuntos
Laboratórios , Marte , Nêutrons , Voo Espacial/instrumentação , United States National Aeronautics and Space Administration , Hidrogênio/análise , Análise Numérica Assistida por Computador , Solo/análise , Estados Unidos
9.
Science ; 300(5628): 2081-4, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12829779

RESUMO

Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south.


Assuntos
Gelo-Seco , Marte , Água/análise , Atmosfera , Meio Ambiente Extraterreno , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...