Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242309

RESUMO

Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.


Assuntos
Pão , Estresse Salino , Triticum , Perfilação da Expressão Gênica
2.
Plant Physiol Biochem ; 159: 383-391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33450508

RESUMO

Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress.


Assuntos
Secas , Folhas de Planta , Sorghum , Ceras , Genes de Plantas/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sorghum/química , Sorghum/genética , Sorghum/metabolismo , Estresse Fisiológico/genética , Água , Ceras/química , Ceras/metabolismo
3.
Plant Cell Rep ; 38(3): 361-376, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30627770

RESUMO

KEY MESSAGE: SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Sorghum/genética
4.
J Genet ; 94(4): 611-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26690515

RESUMO

Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.


Assuntos
Aciltransferases/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Silybum marianum/genética , Sequência de Aminoácidos , Flores/genética , Dados de Sequência Molecular , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...