Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Rep ; 14(1): 10660, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724525

RESUMO

Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) cases are more prone to Influenza and SARS-CoV-2 infection. Accordingly, we genetically characterized Influenza and SARS-CoV-2 in 633 ILI and SARI cases by rRT-PCR and WGS. ILI and SARI cases showed H1N1pdm09 prevalence of 20.9% and 23.2% respectively. 135 (21.3%) H1N1pdm09 and 23 (3.6%) H3N2 and 5 coinfection (0.78%) of H1N1pdm09 and SARS-CoV-2 were detected. Phylogenetic analysis revealed H1N1pdm09 resemblance to clade 6B.1A.5a.2 and their genetic relatedness to InfA/Perth/34/2020, InfA/Victoria/88/2020 and InfA/Victoria/2570/2019. Pan 24 HA and 26 NA nonsynonymous mutations and novel HA (G6D, Y7F, Y78H, P212L, G339R, T508K and S523T) and NA (S229A) mutations were observed. S74R, N129D, N156K, S162N, K163Q and S164T alter HA Cb and Sa antibody recognizing site. Similarly, M19T, V13T substitution and multiple mutations in transmembrane and NA head domain drive antigenic drift. SARS-CoV-2 strains genetically characterized to Omicron BA.2.75 lineage containing thirty nonsynonymous spike mutations exhibited enhanced virulence and transmission rates. Coinfection although detected very minimal, the mutational changes in H1N1pdm09 and SARS-CoV-2 virus infected individuals could alter antibody receptor binding sites, allowing the viruses to escape immune response resulting in better adaptability and transmission. Thus continuous genomic surveillance is required to tackle any future outbreak.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Filogenia , SARS-CoV-2 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , SARS-CoV-2/genética , Influenza Humana/virologia , Influenza Humana/epidemiologia , COVID-19/virologia , COVID-19/epidemiologia , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Adolescente , Adulto Jovem , Genoma Viral/genética , Idoso , Coinfecção/virologia , Coinfecção/epidemiologia , Criança , Pré-Escolar , Síndrome Respiratória Aguda Grave/virologia , Síndrome Respiratória Aguda Grave/epidemiologia , Mutação , Lactente
2.
PLoS One ; 19(4): e0299785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598442

RESUMO

Intense cultivation with narrow row spacing in wheat, a common practice in the Indo-Gangetic plains of South Asia, renders the crop more susceptible to lodging during physiological maturity. This susceptibility, compounded by the use of traditional crop cultivars, has led to a substantial decline in overall crop productivity. In response to these challenges, a two-year field study on the system of wheat intensification (SWI) was conducted. The study involved three different cultivation methods in horizontal plots and four wheat genotypes in vertical plots, organized in a strip plot design. Our results exhibited that adoption of SWI at 20 cm × 20 cm resulted in significantly higher intercellular CO2 concentration (5.9-6.3%), transpiration rate (13.2-15.8%), stomatal conductance (55-59%), net photosynthetic rate (126-160%), and photosynthetically active radiation (PAR) interception (1.6-25.2%) over the existing conventional method (plant geometry 22.5 cm × continuous plant to plant spacing) of wheat cultivation. The lodging resistance capacity of both the lower and upper 3rd nodes was significantly higher in the SWI compared to other cultivation methods. Among different genotypes, HD 2967 demonstrated the highest recorded value for lodging resistance capacity, followed by HD 2851, HD 3086, and HD 2894. In addition, adoption of the SWI at 20 cm × 20 cm enhanced crop grain yield by 36.9-41.6%, and biological yield by 27.5-29.8%. Significantly higher soil dehydrogenase activity (12.06 µg TPF g-1 soil hr-1), arylsulfatase activity (82.8 µg p-nitro phenol g-1 soil hr-1), alkaline phosphatase activity (3.11 n moles ethylene g-1 soil hr-1), total polysaccharides, soil microbial biomass carbon, and soil chlorophyll content were also noted under SWI over conventional method of the production. Further, increased root volumes, surface root density and higher NPK uptake were recorded under SWI at 20×20 cm in comparison to rest of the treatments. Among the tested wheat genotypes, HD-2967 and HD-3086 had demonstrated notable increases in grain and biological yields, as well as improvements in the photosynthetically active radiation (PAR) and chlorophyll content. Therefore, adoption of SWI at 20 cm ×20 cm (square planting) with cultivars HD 2967 might be the best strategy for enhancing crop productivity and resource-use efficiency under the similar wheat growing conditions of India and similar agro-ecotypes of the globe.


Assuntos
Solo , Triticum , Triticum/genética , Água/análise , Clorofila , Biomassa , Grão Comestível/química
3.
Front Plant Sci ; 15: 1354561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562561

RESUMO

Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.

4.
Plant Signal Behav ; 19(1): 2341506, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607960

RESUMO

Sugar signaling forms the basis of metabolic activities crucial for an organism to perform essential life activities. In plants, sugars like glucose, mediate a wide range of physiological responses ranging from seed germination to cell senescence. This has led to the elucidation of cell signaling pathways involving glucose and its counterparts and the mechanism of how these sugars take control over major hormonal pathways such as auxin, ethylene, abscisic acid and cytokinin in Arabidopsis. Plants use HXK1(Hexokinase) as a glucose sensor to modulate changes in photosynthetic gene expression in response to high glucose levels. Other proteins such as SIZ1, a major SUMO E3 ligase have recently been implicated in controlling sugar responses via transcriptional and translational regulation of a wide array of sugar metabolic genes. Here, we show that these two genes work antagonistically and are epistatic in controlling responsiveness toward high glucose conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucose , Ligases/genética , Desenvolvimento Vegetal , Ubiquitina-Proteína Ligases/genética
5.
Cureus ; 16(3): e56864, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659554

RESUMO

AIM: To determine the role of geminin as a tool for differentiating various types of cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CC). METHODS: Seventy women newly diagnosed with CIN or CC undergoing cervical biopsy were included; their clinical profile, human papilloma virus (HPV) positivity, and colposcopy findings were noted, and biopsy tissue was analyzed for geminin content. RESULTS: On geminin immunohistochemistry, 100% of women with CIN3 and 96.29% of women with CC had geminin two plus or more. When analyzed as ordinal variables, there was a significant correlation (spearman's rho 0.35, p 0.01) between geminin and biopsy results (CIN1, CIN2, CIN3, and CC). CONCLUSIONS: Screening tests for cervical cancer, like conventional pap smears, liquid-based pap smears, and triaging with HPV, have limitations. It is important to be able to differentiate between high-grade lesions, invasive cancer, and low-grade lesions. The detection of geminin in these cells may aid in the confirmation of the diagnosis and ensure adequate treatment. Cervical intraepithelial lesions and carcinoma cervix demonstrated a correlation between increased geminin expression in CIN1 vs. CC and CIN2 vs. CC. Geminin may be a potential surrogate marker for higher-grade cervical lesions, and further research is needed to corroborate evidence in this direction.

6.
Heliyon ; 10(5): e26815, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439864

RESUMO

Soybean-wheat is the predominant cropping system covering >2.5 Mha area in India. The lower productivity of soybean-wheat cropping system (SWCS), remains a serious concern primarily due to inadequate nutrient management. Increasing sulfur (S) deficiency is widespread, especially under oilseed-based cropping system. Hence, to standardize the S requirement through customized fertilization, an experiment was conducted in completely randomized block design (RBD) comprised of 12 nutrient sources, replicated thrice. The study aims to evaluate the agronomic performance of sulfonated nitrogen (SN) in comparison to conventional S nutrient sources in SWCS. The maximum soybean productivity was recorded under NPK + S through 40-0-0-13 (SN1), although NPK + 50% S (15 kg/ha) as basal and 50% (15 kg/ha) as top dressing through SN2 10-0-0-75 produced maximum wheat grain yield. When compared with no nitrogen (control), the application of 30 kg S ha-1 to both crops increased the productivity of the soybean-wheat cropping system up to 39%. The maximum system (SWCS) productivity (8.45 tha-1) was obtained with the application of 50% S as basal and 50% as top dressing (SN2-based), remaining N through urea. The highest sustainable yield index of soybean (SYIS), i.e. 0.90 was under SN1+ remaining N through urea and likewise highest sustainable yield index of wheat (SYIW) was under S splitting. The application of SN also improved the nutrient acquisition and grain quality of soybean and wheat with a positive nutrient balance in the soil. The protein content and yield of soybean and wheat grains also improved. The higher gluten content in wheat grain was produced with 60 kg S ha-1 applied. The agronomic efficiency of N and S (AEN and AEs) were highest under SN1 and SN2, respectively (32.8 kg grain/kg N applied; 15 kg grain/kg S applied) in soybean, however in wheat, S splitting and urea application resulted in highest agronomic efficiency (AEN and AES) of N and S (17.1 kg grain/kg N applied; 22.3 kg grain/kg S applied respectively). Hence splitting of S doses of SN along with urea and recommend P, K was found efficient for the soybean-wheat cropping system.

7.
Arch Microbiol ; 206(2): 68, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238530

RESUMO

SARS-CoV-2 has expressively changed its sequences during the COVID-19 pandemic situation by encompassing persistent evolutionary mutational changes resulting in the emergence of many clades and lineages. Evolution of these SARS-CoV-2 variants have significantly imparted fitness advantage to the virus, enhanced its transmissibility and severity of the disease. These new variants are a potential threat to the vaccine efficacy as well. It is therefore pertinent to monitor the evolution of these variants and their epidemiological and clinical impact, in a geographic setting. This study has thus looked into the geographic distribution and genetic diversity of SARS-CoV-2 variants and the evolutionary circulation of different clades in Chhattisgarh (CG) state from March 2020 to July 2023. A total of 3018 sequences were retrieved from the GISAID database, in which 558 were submitted by us. The demographic data revealed male preponderance of 56.45% versus 43.54% females, with the overall mean age of 36.5 years. SARS-CoV-2 sequences represented many variants viz., Delta (55%), Omicron (22%) and others (15%) with a small proportion of recombinant (5%), Kappa (2%), and Alpha (1%). The viral clades G was found predominant for a year from initial days of pandemic in March, 2020 to January, 2021 which then subsequently evoluted to subclade GK (Delta B.1.617.2) and remained in circulation in CG till November, 2021. From December 2021, the GRA (Omicron B.1.1.529) variant had replaced GK to become the dominant strain and continues to predominate in present time. GRA clade is however continuously encompassing new recombinant strains, having various non-synonymous mutations especially in spike protein. The non-synonymous mutation P314L in ORF1b, S84L in ORF8 and D614G in spike protein were found as the pan mutation carried over from clade G to GRA. The continuous evolution in SARS-CoV2 warrants periodical geographic genomic surveillance monitoring to timely detect any new variants having the potential of causing future outbreak.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Masculino , Humanos , Adulto , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , RNA Viral , Glicoproteína da Espícula de Coronavírus/genética , Genômica , Índia/epidemiologia , Mutação
8.
Sci Rep ; 14(1): 1100, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212628

RESUMO

The growing popularity of nano-fertilization around the world for enhancing yield and nutrient use efficiency has been realized, however its influence on soil microbial structure is not fully understood. The purpose of carrying out this study was to assess the combined effect of nano and conventional fertilizers on the soil biological indicators and crop yield in a wheat-maize system. The results indicate that the at par grain yield of wheat and maize was obtained with application of 75% of recommended nitrogen (N) with full dose of phosphorus (P) and potassium (K) through conventional fertilizers along with nano-N (nano-urea) or nano-N plus nano-Zn sprays and N100PK i.e. business as usual (recommended dose of fertilizer). Important soil microbial property like microbial biomass carbon was found statistically similar with nano fertilizer-based management (N75PK + nano-N, and N75PK + nano-N + nano-Zn) and conventional management (N100PK), during both wheat and maize seasons. The experimental data indicated that the application of foliar spray of nano-fertilizers along with 75% N as basal is a sustainable nutrient management approach with respect to growth, yield and rhizosphere biological activity. Furthermore, two foliar sprays of nano-N or nano-N + nano-Zn curtailed N requirement by 25%, furthermore enhanced soil microbial diversity and the microbial community structure. The specific microbial groups, including Actinobacteria, Bacteroidia, and Proteobacteria, were present in abundance and were positively correlated with wheat and maize yield and soil microbial biomass carbon. Thus, one of the best nutrient management approaches for sustaining productivity and maintaining sound microbial diversity in wheat-maize rotation is the combined use of nano-fertilizers and conventional fertilizers.


Assuntos
Agricultura , Microbiota , Agricultura/métodos , Fertilizantes , Triticum , Zea mays , Nitrogênio/análise , Zinco/farmacologia , Solo/química , Carbono/farmacologia
9.
Fish Physiol Biochem ; 50(1): 197-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37450203

RESUMO

Herbal plants can enhance immunity and alleviate oxidative stress in fish. Therefore, the present work was performed to evaluate the effects of bay laurel (Laurus nobilis) on growth, immunity, antioxidant activities, disease resistance, and hematology in Nile tilapia (Oreochromis niloticus). A total of 225 Nile tilapia fingerlings (average weight 15.36 ± 0.04 g) were divided into five treatment groups and fed with bay laurel at 0, 10, 15, 20, and 25 g/kg diet for 90 days. A completely randomized design with three replications was applied. The significantly (p < 0.05) improved weight growth (WG), food conversion ratio (FCR), average daily growth (ADG), protein efficiency ratio (PER), and survival rate were observed in fish fed with bay laurel-supplemented diet at the rate of 15 g/kg. Significantly improved red blood cells (RBCs) count, white blood cells (WBCs), hemoglobin (Hb), and significantly declined alanine aminotransaminase (ALT) and aspartate transaminase (AST) were found in the same diet-fed group. The immune response parameters such as nitro blue tetrazolium (NBT), lysozyme activity, phagocytic activity, total serum protein, serum albumin, serum globulin, and albumin-globulin ratio were found significantly improved at 15 g/kg bay laurel supplemented diet. The improved antioxidant response (catalase, glutathione peroxidase, malondialdehyde, total antioxidant activity) was also observed in the same diet-fed group. Relative percent survival after the fish challenged against Aeromonas hydrophila was significantly (p < 0.05) different. Overall, bay laurel supplementation at a 15 g/kg diet improved the nutritional physiology and immunity and, therefore, could be a potential growth-promoting feed additive for aquaculture development.


Assuntos
Ciclídeos , Doenças dos Peixes , Laurus , Animais , Aeromonas hydrophila , Laurus/metabolismo , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Estresse Oxidativo , Albuminas/metabolismo , Ração Animal/análise
10.
Heliyon ; 9(12): e22566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094049

RESUMO

Increasing complexity in crop nutrient requirement in intensive crop production systems needs alternate multi-nutrient sources. Polyhalite (POLY-4) which contains 14% K2O along withcalcium (17% CaO), magnesium (6% MgO), and sulfur (19% S) can be a possible recourse in this regard. In maize-wheat systems, it was evaluated for productivity, profitability, nutrient usage, and nutrient use efficiency under Indo-Gangetic plain (IGP) zones for consecutive two years (2018-19 and 2019-20). The results revealed that 150% K through POLY-4 produced the maximum maize grain yield under the Trans Indo-Gangetic plains (TGP). The maize grain yield increased by 20.8% and 26.2% under 100% K (POLY-4) and 150% K (POLY-4) over No-K, respectively. But statistically, 100% K (POLY-4) stands similar with both 150% K (POLY-4) and 150% K through muriate of potash (MOP) and equivalent. The trends were noticed under upper Indo-Gangetic plain zones (UGP) also. Similarly, the maximum wheat grain yield (6.12 and 6.29 t/ha under TGP and UGP, respectively) was obtained under 150% K (POLY-4), and remained statistically at par with 100% K (POLY-4), but significantly higher than 150% K (MOP). Under both agro-ecologies i.e. TGP and UGP, the highest system productivity was obtained with recommended N, P, and 150% K application through POLY-4. The added return over NPK remained highest with 150% K (POLY-4) for both maize and wheat. However, higher partial factor productivity for N and S, agronomic, physiological, and translocation efficiencies were noticed under 150% K (POLY-4), and remained at par with 100% K (POLY-4). Increased system yield, added returns, partial factor productivity, agronomic, physiological, and translocation efficiencies under 100% K through POLY-4 (along with recommended N and P) proved its effectiveness as multi-nutrient source for the maize-wheat system under TGP and UGP.

11.
J Orthop Case Rep ; 13(11): 83-88, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38025367

RESUMO

Introduction: Arterial pseudoaneurysm is a hematoma that is formed after damage to the arterial wall. We report a rare case of peroneal artery pseudoaneurysm after open reduction and internal fixation with interlocking nailing and partial fibulectomy for non-union for the right tibia in a 31-year-old male. The patient presented with a bleeding sinus over the leg swelling, and it was managed with an exploration of the pseudoaneurysm and ligation of the peroneal artery. Case Report: A 30-year-old male patient presented with a non-union tibia on the right side and had undergone plating of the tibia at another institute for a fracture of both bone legs approximately 18 months ago. The revision surgery was performed in which a previously inserted implant was removed and an interlocking nail was inserted, along with a partial fibulectomy. The post-operative period was uneventful. At 8 weeks after the second surgery, the patient came with a complaint of swelling at the outer aspect of the right leg. Computed tomography and angiography confirmed a peroneal artery pseudoaneurysm of 3.2 × 2.8 × 3.8 cm. Pseudoaneurysm was explored, and the artery was overrun with a Figure-8 stitches using a monofilamentous, and non-absorbable suture. Conclusion: This case report highlights the occurrence of pseudoaneurysm after an orthoapedic procedure such as a partial fibulectomy. A high level of clinical suspicion, proper imaging, and early endovascular or surgical intervention is recommended to prevent complications.

12.
Front Public Health ; 11: 1218292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927860

RESUMO

Background: Over time, COVID-19 testing has significantly declined across the world. However, it is critical to monitor the virus through surveillance. In late 2020, WHO released interim guidance advising the use of the existing Global Influenza Surveillance and Response System (GISRS) for the integrated surveillance of influenza and SARS-CoV-2. Methods: In July 2021, we initiated a pan-India integrated surveillance for influenza and SARS-CoV-2 through the geographically representative network of Virus Research and Diagnostic Laboratories (VRDLs) across 26 hospital and laboratory sites and 70 community sites. A total of 34,260 cases of influenza-like illness (ILI) and Severe acute respiratory infection (SARI) were enrolled from 4 July 2021 to 31 October 2022. Findings: Influenza A(H3) and B/Victoria dominated during 2021 monsoon season while A(H1N1)pdm09 dominated during 2022 monsoon season. The SARS-CoV-2 "variants of concern" (VoC) Delta and Omicron predominated in 2021 and 2022, respectively. Increased proportion of SARI was seen in extremes of age: 90% cases in < 1 year; 68% in 1 to 5 years and 61% in ≥ 8 years age group. Approximately 40.7% of enrolled cases only partially fulfilled WHO ILI and SARI case definitions. Influenza- and SARS-CoV-2-infected comorbid patients had higher risks of hospitalization, ICU admission, and oxygen requirement. Interpretation: The results depicted the varying strains and transmission dynamics of influenza and SARS-CoV-2 viruses over time, thus emphasizing the need to continue and expand surveillance across countries for improved decision making. The study also describes important information related to clinical outcomes of ILI and SARI patients and highlights the need to review existing WHO ILI and SARI case definitions.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia , Viroses , Humanos , Influenza Humana/epidemiologia , Teste para COVID-19 , Vírus da Influenza A Subtipo H1N1/genética , Genômica , Índia/epidemiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-37902875

RESUMO

H2 production via water-gas shift reaction (WGS) is an important process and applied widely. Cobalt-modified CeO2 are promising catalysts for WGS reaction. Herein, a series of Co/Nb-CeO2 catalysts were prepared by varying the rate of precipitant addition during the coprecipitation method and examined for hydrogen generation through WGS reaction. The rates of precipitant addition were 1, 5, 15, and 25 mL/min. We obtained ceria supported cobalt catalysts with different sizes and morphology such as 3, 8 nm nanoclusters, 30 nm cubic nanoparticles, and 50 nm hexagonal nanoparticles. The well dispersed small cobalt particles in Co/Nb-CeO2 that was prepared at 5 mL/min titration rate exhibit strong interaction between cobalt oxide and CeO2 that retards the reduction of CoOx producing Co-CoOx pairs. In contrast, 1-Co/Nb-CeO2 and 25-Co/Nb-CeO2 result in bigger and aggregated Co particles, resulting in fewer interfaces with CeO2. The Co0, Coδ+, Ce3+, and Ov species are responsible for improved reducibility in Co/Nb-CeO2 catalysts and were quantitively measured using XPS, XAS, and Raman spectroscopy. The Co-CoOx interface assists dissociation of the H2O molecule; CO oxidation requires low activation energy and realizes a high turnover frequency of 9.8 s-1. The 5-Co/Nb-CeO2 catalyst achieved thermodynamic equilibrium equivalent CO conversion with efficient H2 production during WGS reaction at a gas hourly space velocity of 315,282 h-1. Successively, the 5-Co/Nb-CeO2 catalyst exhibited stable performance for straight 168 h attributed to stable CO-Coδ+ intermediate formation, achieving efficient inhibition of typical CO chemistry over the Co metal, suitable for hydrogen generation from waste derived synthesis gas.

14.
PLoS One ; 18(7): e0284009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37406009

RESUMO

One of the biggest challenges to be addressed in world agriculture is low nitrogen (N) use efficiency (<40%). To address this issue, researchers have repeatedly underlined the need for greater emphasis on the development and promotion of energy efficient, and environmentally sound novel fertilizers, in addition to improved agronomic management to augment nutrient use efficiency for restoring soil fertility and increasing farm profit. Hence, a fixed plot field experiment was conducted to assess the economic and environmental competency of conventional fertilizers with and without nano-urea (novel fertilizer) in two predominant cropping systems viz., maize-wheat and pearl millet-mustard under semi-arid regions of India. Result indicates that the supply of 75% recommended N with conventional fertilizer along with nano-urea spray (N75PK+nano-urea) reduced the energy requirement by ~8-11% and increased energy use efficiency by ~6-9% over 100% nitrogen through prilled urea fertilizer (business as usual). Furthermore, the application of N75PK+ nano-urea exhibited ~14% higher economic yields in all the crops compared with N50PK+ nano-urea. Application of N75PK+nano-urea registered comparable soil N and dehydrogenase activities (35.8 µg TPF g-1 24 hrs-1 across all crops) over the conventional fertilization (N100PK). This indicates that application of foliar spray of nano-urea with 75% N is a soil supportive production approach. More interestingly, two foliar sprays of nano-urea curtailed nitrogen load by 25% without any yield penalty, besides reducing the greenhouse gases (GHG) emission from 164.2 to 416.5 kg CO2-eq ha-1 under different crops. Therefore, the application of nano-urea along with 75% N through prilled urea is an energy efficient, environmentally robust and economically feasible nutrient management approach for sustainable crop production.


Assuntos
Fertilizantes , Ureia , Conservação de Recursos Energéticos , Agricultura , Solo , Produção Agrícola , Nitrogênio/análise , Zea mays , Produtos Agrícolas
15.
Front Plant Sci ; 14: 1121073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143873

RESUMO

Nitrogen (N) is an essential element required for the growth and development of all plants. On a global scale, N is agriculture's most widely used fertilizer nutrient. Studies have shown that crops use only 50% of the applied N effectively, while the rest is lost through various pathways to the surrounding environment. Furthermore, lost N negatively impacts the farmer's return on investment and pollutes the water, soil, and air. Therefore, enhancing nitrogen use efficiency (NUE) is critical in crop improvement programs and agronomic management systems. The major processes responsible for low N use are the volatilization, surface runoff, leaching, and denitrification of N. Improving NUE through agronomic management practices and high-throughput technologies would reduce the need for intensive N application and minimize the negative impact of N on the environment. The harmonization of agronomic, genetic, and biotechnological tools will improve the efficiency of N assimilation in crops and align agricultural systems with global needs to protect environmental functions and resources. Therefore, this review summarizes the literature on nitrogen loss, factors affecting NUE, and agronomic and genetic approaches for improving NUE in various crops and proposes a pathway to bring together agronomic and environmental needs.

16.
J Environ Manage ; 338: 117740, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027954

RESUMO

The soil carbon (C) dynamics is strongly influenced by climate and land-use patterns in the Himalayas. Therefore, soils under five prominent land use [e.g., maize (Zea mays), horticulture, natural forest, grassland, and wasteland] were sampled down up to 30 cm depth under two climatic conditions viz., temperate and subtropical to assess the impacts of climate and landuse on soil C dynamics. Results demonstrated that irrespective of land use, temperate soil contains 30.66% higher C than subtropical soils. Temperate soils under natural forests had the higher total organic carbon (TOC, 21.90 g kg-1), Walkley-Black carbon (WBC, 16.42 g kg-1), contents, and stocks (TOC, 66.92 Mg ha-1 and WBC, 50.24 Mg ha-1), and total soil organic matter (TSOM, 3.78%) concentration as compared to other land uses like maize, horticulture, grassland, and wasteland. Under both climatic conditions, maize land use had the lowest TOC 9.63, 6.55 g kg-1 and WBC 7.22, 4.91 g kg-1 at 0-15 and 15-30 cm soil depth, respectively. Horticulture land use had 62.58 and 62.61% higher TOC and WBC over maize-based land use under subtropical and temperate climatic conditions at 0-30 cm soil depth, respectively. However, soils of maize land use under temperate conditions had ∼2 times more TOC than in subtropical conditions. The study inferred that the C-losses is more in the subtropical soil than in temperate soils. Hence, the subtropical region needs more rigorous adoption of C conservation farming practices than the temperate climatic setting. Although, the adoption of C storing and conserving practices is crucial under both climatic settings to arrest land degradation. Horticultural land uses along with conservation effective soil management practices may be encouraged to restore more soil C and to improve the livelihood security of the hill populace in the North Western Himalayas.


Assuntos
Carbono , Solo , Conservação dos Recursos Naturais , Agricultura/métodos , Florestas , Zea mays
17.
Fish Physiol Biochem ; 49(1): 19-37, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36759400

RESUMO

Organic acids and their derivatives have been attributed to growth and well-being improvement in fish when supplemented in their diets. Therefore, this study was conducted to evaluate the ameliorative role of potassium formate (PF) in rohu Labeo rohita fingerlings. A total of 240 healthy rohu fingerlings (9.0 ± 0.5 g ± SE) were randomly divided into four equal groups in triplicates. Fish were fed with isonitrogenous feeds: PF10 (10 g PF/kg), PF20 (20 g PF/kg) and PF30 (30 g PF/kg). Feed without PF supplementation served as control. The results indicated that the specific growth rate (SGR) and feed conversion ratio (FCR) were significantly (p<0.05) higher in PF10. Total serum globulin content was found significantly (p<0.05) elevated in PF10 after the bacterial challenge. Non-specific lysozyme activity was significantly higher (p<0.05) after the challenge. The digestive protease enzyme activity was significantly (p<0.05) improved in PF10 treatment. Additionally, the digestive morphology of the treated fish was seen to be improved. Greater villus area, increased villus number, reduced lumen space in the hindgut, reduced vacuolation in mucosal folds and proliferation of goblet cells-like changes were observed in the PF-supplemented fish. Significantly (p<0.05), a higher relative percentage of survival (RPS) was observed in PF10 and PF20 treatments. The study revealed that the dietary supplementation of rohu fingerlings with lower levels of potassium formate could enhance the nutritional efficiency and physiological activities of rohu fingerlings. This study serves as a baseline for future research on the application of formic acid derivatives and other acidifiers in carp culture.


Assuntos
Cyprinidae , Potássio na Dieta , Animais , Dieta/veterinária , Suplementos Nutricionais , Formiatos/farmacologia , Proteínas , Ração Animal/análise
19.
Biol Trace Elem Res ; 201(8): 4079-4092, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36374364

RESUMO

Functional trace elements and vitamins can boost immunity and anti-oxidative response in aquatic animals with effects on nutritional physiology. Nano-selenium (nano-Se) and vitamin C (VC) have been used as immunomodulators and antioxidants in fish feed. The present work was performed to determine the protective effects of diets supplemented with different combinations of nano-Se and VC on Nile tilapia (Oreochromis niloticus). Triplicate groups of 20 fish/tank (13.87 ± 0.10 g) were reared and fed with basal diet (control-T1) (without supplementation of nano-Se and VC) and three experimental diets as T2, T3, and T4 (100, 200, and 300 mg/kg VC respectively) with a pre-determined dose of nano-Se (1.0 mg/kg) for 90 days. Different immune indices, haemato-biochemical, and antioxidant activities were measured at the end of the first, second, and third months of feeding. The findings depicted that significantly (p < 0.05) higher growth was observed in T4. Red blood cells, white blood cells, and haemoglobin were found significantly (p < 0.05) higher in T4 for the third month. Serum biochemical-immunological indices (alkaline phosphatase, glucose, cholesterol, lysozyme, myeloperoxidase, total protein, albumin and globulin) followed the same trend. Furthermore, antioxidant assays such as catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were significantly (p < 0.05) improved in T4 for the third month. Significantly (p < 0.05) least cumulative mortality against Aeromonas hydrophila was obtained in the fish-fed diets incorporated with nano-Se and VC. Therefore, dietary supplementation with nano-Se and VC is noteworthy for improving growth, serum biochemical status, immune response, antioxidant status, and disease resistance.


Assuntos
Ciclídeos , Selênio , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aeromonas hydrophila/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Vitaminas , Resistência à Doença , Estresse Oxidativo , Ração Animal/análise
20.
Indian J Clin Biochem ; : 1-8, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36569378

RESUMO

Human Coronaviruses (hCoVs) belongs to the enormous and dissimilar family of positive-sense, non-segmented, single-stranded RNA viruses. The RNA viruses are prone to high rates of mutational recombination resulting in emergence of evolutionary variant to alter various features including transmissibility and severity. The evolutionary changes affect the immune escape and reduce effectiveness of diagnostic and therapeutic measures by becoming undetectable by the currently available diagnostics and refractory to therapeutics and vaccines. Whole genome sequencing studies from various countries have adequately reported mosaic recombination between different lineage strain of SARS-CoV-2 whereby RNA dependent RNA polymerase (RdRp) gene reconnects with a homologous RNA strand at diverse position. This all lead to evolutionary emergence of new variant/ lineage as evident with the emergence of XBB in India at the time of writing this review. The continuous periodical genomic surveillance is utmost required for understanding the various lineages involved in recombination to emerge into hybrid variant. This may further help in assessing virus transmission dynamics, virulence and severity factor to help health authorities take appropriate timely action for prevention and control of any future COVID-19 outbreak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...