Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 176: 113798, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146712

RESUMO

Dietary phytoestrogens are the main source of environmental contamination due to their estrogen-mimicking and endocrine-disrupting effects, posing a threat to microbial, soil, plant, and animal health. Diosgenin, a phytosteroid saponin, is used in many traditional medicines, nutraceuticals, dietary supplements, contraceptives, and hormone replacement therapies against numerous diseases and disorders. It is important to be aware of the potential risks associated with diosgenin, as well as its potential to cause reproductive and endocrine toxicity. Due to the lack of research on the safety and probable adverse side effects of diosgenin, this work evaluated the endocrine-disrupting and reproductive toxicity of diosgenin in albino mice by following acute toxicity (OECD-423), repeated dose 90-day oral toxicity (OECD-468), and F1 extended one-generation reproductive toxicity (OECD-443) studies. Diosgenin was found to be slightly toxic, with LD50 for male and female mice being 546.26 and 538.72 mg/kg, respectively. Chronic exposure of diosgenin (10, 50, 100, and 200 mg/kg) generated oxidative stress, depleted antioxidant enzymes, disturbed homeostasis of the reproductive hormones, and interrupted steroidogenesis, germ cell apoptosis, gametogenesis, sperm quality, estrous cycle, and reproductive performance in the F0 and F1 offspring. Long-term oral exposure of diosgenin to the mice disturbed the endocrine and reproductive functions and generated transgenerational reproductive toxic effects in F0 and F1 offspring. These results suggest that diosgenin should be used carefully in food products and medical applications due to its potential endocrine-disrupting and reproductive toxic effects. The findings of this study provide a better understanding of the potential adverse effects of diosgenin and the need for appropriate risk assessment and management of its use.


Assuntos
Disruptores Endócrinos , Fitoestrógenos , Masculino , Animais , Camundongos , Fitoestrógenos/toxicidade , Disruptores Endócrinos/toxicidade , Sêmen , Reprodução , Estrogênios/farmacologia , Substâncias Perigosas
2.
Environ Pollut ; 302: 119048, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219795

RESUMO

Lead (Pb), is an environmental toxicant, causes multi-organ dysfunction including reproductive impairments. This study designed to investigate the prospective antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid (EA) on Pb-mediated testicular and hepato-renal toxicity. Four experimental groups of five male Long-Evans rats each were used: control, Pb (60 mg/kg), EA (30 mg/kg), and Pb + EA groups. All groups were given their respective treatment orally for 30 days. Pb exposure altered body and organs weight, food and water consumption, rectal temperature, Pb residue levels in tissues, liver and kidney function, sperm quality parameters, serum metabolic and hematology profiles, and impaired the oxidative/antioxidative balance in the testicular and hepato-renal tissue, as shown by the decreased antioxidant proteins (superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione) and increased the oxidative (MDA, lipid hydroperoxides, conjugated dienes, protein carbonyl, fragmented DNA and GSH:GSSG ratio) stress and inflammatory (IL-1, IL-6, TNF-α, prostaglandin, LTB4, NO, myeloperoxidase, LDH) markers. Moreover, a dysregulation in the stress response (HSP-70) and apoptotic-regulating proteins (BAX, BCL-2, and active Caspase-3) were recorded upon Pb exposure. Remarkably, EA oral administration reduced the Pb residue levels in tissues, improved the liver and kidney function, revived the spermatogenesis and sperm quality, restored redox homeostasis, suppressed the oxidative stress, inflammatory and apoptotic responses in the liver, kidney and testis tissue. Our findings point out that EA can be used as a phyto-chelator to overcome the adverse effects of Pb exposure due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Antioxidantes , Ácido Elágico , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Ácido Elágico/metabolismo , Ácido Elágico/farmacologia , Fígado/metabolismo , Masculino , Compostos Organometálicos , Estresse Oxidativo , Estudos Prospectivos , Ratos , Ratos Long-Evans , Testículo
3.
Environ Sci Pollut Res Int ; 26(20): 20631-20653, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104231

RESUMO

The aim of this study relates to the modulatory role of ferulic acid (FA) against cadmium (Cd)-induced oxidative stress in the liver and kidney of male Wistar albino rats. Cd is an extremely toxic industrial and environmental pollutant and is well known for its varied toxic clinical manifestations. FA is a derivative of curcumin and a ubiquitous phenolic compound having a wide range of therapeutic activities. In the current study, Cd (10 mg/kg) was administered subcutaneously for 15 and 30 days to induce hepato-renal toxicity. Cd concentration was found to be significantly high in Cd-intoxicated rats (liver > kidney) while the supplementation of FA (50 mg/kg) significantly reduces the Cd concentration in liver and kidney tissues. Reduced body and organ weights and food and water consumption and increased rectal temperature were noticed in Cd-treated rats while these parameters were significantly ameliorated in FA-supplemented rats. Liver and kidney damage induced by Cd was significantly revealed by the reduction in serum total protein contents (TPC) and increased activities of serum nitric oxide (NO) levels and hepato-nephrotoxicity marker enzymes, namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactic dehydrogenase (LDH), AST:ALT ratio, uric acid, urea, urea nitrogen, and creatinine, along with the increased levels of hepatic and renal oxidative stress markers, namely lipid peroxidation (MDA levels), lipid hydroperoxides (LOOH), protein carbonyl content (PCC), total oxidant status (TOS), and oxidative stress index (OSI) in liver and kidney tissues. In addition, the toxicity of Cd was also evidenced by a significant decrease in the levels of total thiols (TTH), total antioxidant concentration (TAC), enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), and non-enzymatic antioxidants (reduced glutathione (GSH) and total free sulfhydryl groups (TSH)). Administration of FA significantly restored the serum total protein levels and activities of serum NO levels and hepatic and renal marker enzymes to normal levels in comparison with Cd-intoxicated rats. Furthermore, FA significantly reduced the oxidative stress markers and recuperated the levels of antioxidant defense in the liver and kidney as evidenced by native PAGE and spectrophotometric assays, correlation and regression analysis and multivariate analysis of variance (MANOVA), and inferring the antioxidant role of FA. Histopathological damage due to Cd intoxication in the liver and kidney is demonstrated as vasodilatation and congestion in central veins and sinusoids as well as around the glomerulus, infiltration of mixed inflammatory cells and peripheral hemorrhage, hemorrhagic and enlarged sinusoids, disorganization of the hepatic parenchyma, focal necrosis, swelling of hepatocytes, calcified tissue inside blood vessels, hepatocyte degeneration and vacuolization of liver cells, hyaline casts, degenerated glomerulus with wide space and detached basement membrane, distal tubule with wide lumen, deformed proximal tubules with detached brush border, and degeneration and hyalinization of glomerular tuft. But, FA significantly reduced the toxicity of Cd and protected the normal histological architecture of the liver and kidney tissues. Cd-intoxicated rats were associated with a significant upregulation of TNF-α, COX-2, and HSP70 proteins, whereas treatment with FA caused downregulation of the above inflammatory markers indicating the anti-inflammatory role of FA. Principal component analysis (PCA) and Euclidean similarity measure studies clearly indicate that the liver is more prone to Cd toxicity than the kidney and FA supplementation significantly prevents oxidative stress, augmenting antioxidative status, and regaining histological parameters of the liver and kidney to normal, indicating hepato-nephroprotective, antiradical, antioxidant, and anti-inflammatory effects of this phenolic compound.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Ácidos Cumáricos/farmacologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Biomarcadores/metabolismo , Suplementos Nutricionais , Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Wistar
4.
Environ Sci Pollut Res Int ; 26(7): 7082-7101, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648235

RESUMO

Bergenin is one of the phytochemical constituents in marlberry (Ardisia colorata Roxb.) having antioxidant, anti-diabetic, and anti-inflammatory properties. A. colorata has been used as an herbal medicine in Southeast Asia particularly in Northeast India to treat diabetes. Bergenin was isolated from methanol extract of A. colorata leaf (MEACL) by column chromatography and TLC profiling. Characterization and structural validation of bergenin were performed by spectroscopic analyses. A LC-ESI-MS/MS method was developed for the quantitation of bergenin and validated as per the guidelines of FDA and EMA. The validated method was successfully utilized to quantify bergenin concentration in MEACL samples. Therapeutic efficacy of bergenin was investigated on streptozotocin-induced diabetic rats by following standard protocols. Bergenin supplementation significantly improved the physiological and metabolic processes and in turn reverses diabetic testicular dysfunction via increasing serum testosterone concentrations and expression pattern of PCNA, improving histopathological and histomorphometric manifestations, modulating spermatogenic events and germ cell proliferation, restoring sperm quality, reducing sperm DNA damage, and balancing the antioxidant enzymes levels. Hence, A. colorata leaf is one of the alternate rich resources of bergenin and could be used as a therapeutic agent for diabetic testicular complications.


Assuntos
Ardisia , Benzopiranos/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes , Benzopiranos/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental , Índia , Masculino , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Plantas Medicinais , Ratos , Ratos Wistar , Espermatogênese , Espermatozoides , Espectrometria de Massas em Tandem , Testículo
5.
Environ Sci Pollut Res Int ; 25(2): 1837-1862, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29103113

RESUMO

Copper is a persistent toxic and bio-accumulative heavy metal of global concern. Continuous exposure of copper compounds of different origin is the most common form of copper poisoning and in turn adversely altering testis morphology and function and affecting sperm quality. L-carnitine has a vital role in the spermatogenesis, physiology of sperm, sperm production and quality. This study was designed to examine whether the detrimental effects of long-term copper consumption on sperm quality and testis function of Wistar albino rat could be prevented by L-carnitine therapy. The parameters included were sperm quality (concentration, viability, motility, and morphology), histopathology, serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), serum urea, serum creatinine, serum testosterone and testis antioxidant enzyme levels (superoxide dismutase and glutathione-S-transferase), and biomarkers of oxidative stress (lipid peroxidation and expression of heat shock protein 70 in testis). Three-month-old male Wistar rats (n = 30) were divided into six groups as group 1 (G1, 0.9% saline control), group 2 (G2, CuSO4 200 mg/kg dissolved in 0.9% saline water), groups 3 and 4 (G3 and G4, L-carnitine 50 and 100 mg/kg dissolved in 0.9% saline water, respectively), and groups 5 and 6 (G5 and G6, CuSO4 200 mg/kg plus L-carnitine, 50 and 100 mg/kg dissolved in 0.9% saline water, respectively). Doses of copper (200 mg/kg) and L-carnitine (50 and 100 mg/kg) alone and in combinations along with untreated control were administered orally for 30 days. The following morphological, physiological, and biochemical alterations were observed due to chronic exposure of copper (200 mg/kg) to rats in comparison with the untreated control: (1) generation of oxidative stress through rise in testis lipid peroxidation (12.21 vs 3.5 nmol MDA equivalents/mg protein) and upregulation of heat shock protein (overexpression of HSP70 in testis), (2) liver and kidney dysfunction [elevation in serum ALT (81.65 vs 48.08 IU/L), AST (156.82 vs 88.25 IU/L), ALP (230.54 vs 148.16 IU/L), urea (12.65 vs 7.45 mmol/L), and creatinine (80.61 vs 48.25 µmol/L) levels], (3) significant decrease in body (99.64 vs 106.09 g) and organ weights (liver-3.48 vs 4.99 g; kidney-429.29 vs 474.78 mg; testes-0.58 vs 0.96 g), (4) imbalance in hormonal and antioxidant enzyme concentrations [significant decline in serum testosterone (0.778 vs 3.226 ng/mL), superoxide dismutase (3.07 vs 8.55 µmol/mg protein), and glutathione-S-transferase (59.28 vs 115.58 nmol/mg protein) levels], (5) severe alterations in the testis histomorphology [sloughed cells (90.65%, score 4 vs 15.65%, score 1), vacuolization (85.95%, score 4 vs 11.45%, score 1), cellular debris along with degenerative characteristics, accentuated germ cell depletion in the seminiferous epithelium, severe damage of spermatogonia and Sertoli cells (73.56%, score 3 vs 0%, score 1)], (6) suppression of spermatogenic process [hypospermatogenesis (low Jhonsen testicular biopsy score 4 vs 9.5), decrease in tubules size (283.75 vs 321.25 µm in diameter), and no. of germ cells (81.8 vs 148.7/100 tubules), Leydig cells (5.2 vs 36.65/100 tubules), and Sertoli cells (8.1 vs 13.5/100 tubules)], (7) sperm transit time was shorter in caput and cauda and ensued in incomplete spermatogenic process and formation of immature sperm leading to infertility, (8) sperm quality was affected significantly [decreased daily sperm production (13.21 vs 26.9 × 106 sperms/mL), sperm count (96.12 vs 154.25 × 106/g), sperm viability (26.88 vs 91.65%), and sperm motility (38.48 vs 64.36%)], and (9) increase of head (32.82 vs 2.01%) and tail (14.85 vs 0.14%) morphologic abnormalities and DNA fragmentation index (88.37 vs 11.11%). Oxidative stress and their related events appear to be a potential mechanism involved in copper testicular toxicity and L-carnitine supplementation significantly modulated the possible adverse effects of copper on seminiferous tubules damage, testes function, spermatogenesis, and sperm quality. It was validated that the use of L-carnitine at doses of 50 and 100 mg/kg protects against copper-induced testicular tissue damage and acts as a therapeutic agent for copper heavy metal toxicity.


Assuntos
Carnitina/farmacologia , Cobre/toxicidade , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia
6.
Theriogenology ; 88: 73-83, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865415

RESUMO

Chemosterilants have long been used in sterilization programs for managing pet, stray, and wild animals but adverse effects such as trauma, incomplete responses to treatment, and complete abolition of gonadal sources of testosterone often occurs. This study describes the biosterilant effects of administering three doses of Bacillus thuringiensis kurstaki HD-73 (Bt 5, 50, and 250 mg/kg; 20 rats/dose) extract in adult male Wistar albino rats on testicular parameters, function, histology, and a number of biochemical markers of overall health, free radical production, and cell proliferation. Intratesticular administration of Bt extract to rats induces testicular oxidative stress and damages and consequently, perturb spermatogenesis, degeneration of testis, reduction in testes size, and depletion of testosterone and antioxidant enzyme concentrations in a dose-dependent manner because of free radical-mediated lipid peroxidation. No morbidity or mortality adverse effects were observed in both the saline control and Bt extract-treated rats. Significant variation was noted in clinical manifestations, weight and volume of testes, and hormonal and biochemical profiles between Bt doses in comparison with the saline control. Aspermia/azoospermia (100%) resulted in Bt-treated rats without any adverse effects. Histopathological analysis showed degeneration, necrosis, vacuolation, fewer germ cells, formation of multinucleated giant cells, and a lack of elongated spermatids in atrophic seminiferous tubules in Bt extract-treated groups in the presence of low concentrations of testosterone, antioxidant enzymes, and suppression of germ cell proliferation. Dose-dependent effects were evident in most parameters that were measured. The vast array of tests that were undertaken also provides some important indicators of the physiological effects associated with the treatments that were applied. Intratesticular injection of Bt extract impairs spermatogenesis and induces permanent sterility in rats.


Assuntos
Bacillus thuringiensis/química , Esterilizantes Químicos/farmacologia , Animais , Asparaginase/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Testículo/anatomia & histologia , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...