Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 263: 1-18, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30471569

RESUMO

This is a review article on the basic and the latest achievements on superspreading. The complete and fast spreading of droplets on many surfaces in the nature is a special phenomenon discovered in 1960-ies Intensive studies on this phenomenon have been conducted since that time, but the mechanism of superspreading remained in completely unveiled till nowadays. Here we scrutinized the basic literature on superspreading from the last 25 years and also present results related to superspreaders acquired in the present work. The literature in superspreading can be divided to the following groups: (i) works on the properties of the trisiloxane surfactants; (ii) works on the mechanisms of superspreading; (iii) MD simulations; (iv) works on the effect of the trisiloxane surfactants on thin liquid films. There is a number of review articles published in the last decade related to mainly works from groups (i) and (ii). The works on MD simulations (iii) and the effects on trisiloxane surfactants on thin liquid films (iv) are still few despite they are important from the scientific view point. We conducted our own study on the effect of the superspreaders on foam films in rectangular frame and confirmed that the superspreaders cause powerful Marangoni effect within the foam films. Such a strong Marangoni effect has been never observed with the ordinary surfactants. We scrutinized and discussed the basic works from the groups (i)-(iv) on the superspreading and added our own investigation on the distinguishable effects of superspreaders and non-superspreaders on thin foam films. The work could be useful to both beginners and specialists in the field of wetting/de-wetting and superspreading.

2.
Int J Heat Mass Transf ; 127(Pt C): 857-866, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30467441

RESUMO

Pool boiling of ethanol and self-rewetting fluids on bare copper surface and copper surface with polymer nanofibers were studied experimentally. No significant effect of the depths of ethanol layer on the heat removal rate was found. That indicates that only the heat transfer in the liquid microlayer near the heater surface is a dominant factor. As a result, one can expect that self-rewetting fluids can significantly affect boiling performance. Accordingly, several alcohol solutions including the self-rewetting ones were investigated as working fluids in the boiling chamber. It was found that at the 0.1% (v/v) concentration, only the high carbon-alcohol, n-heptanol in aqueous solution, improved boiling heat transfer considerably. Furthermore, the experimental study of the effect of surface nano-texture on boiling characteristics was undertaken. For that aim, polyacrylonitrile (PAN) nanofibers were deposited onto the copper heater surface. Measurements of the boiling curve revealed a detrimental effect of such nano-texture in the case of such working fluids as ethanol and self-rewetting n-heptanol solutions. On the other hand, when polystyrene (PS) nanofibers were deposited onto the copper heater surface instead of PAN nanofibers, a significant improvement in boiling heat transfer was observed. The more hydrophobic nature of PS compared to copper is responsible for this effect, i.e. is the reason of the heat transfer enhancement on such a nano-textured surface compared to the pure copper one. In addition, the critical heat flux in the case of n-heptanol solution was found to be reduced considerably on the PS nano-textured surface compared to the pure copper one. This stems from the increased propensity of the heater surface to be covered by vapor, while the rewetting is insufficiently effective at high heat fluxes in presence of PS nanofibers.

3.
ACS Appl Mater Interfaces ; 10(43): 37749-37759, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30272436

RESUMO

Here, we fabricated nanofiber (NF)-based triboelectric nanogenerators (TENGs) from natural biopolymers using the industrially scalable solution blowing. This technique eliminates severe restrictions on solutions to be used and allows one to achieve biocompatible devices. Here, solutions of soy protein and lignin were blown into continuous monolithic NFs of hundreds of nanometers in diameter. The technique we employed yields large-area NF mats within tens of minutes and has never been employed to form TENGs. Furthermore, in contrast to electrospun and meltblown fiber mats, solution-blown NF mats are much fluffier/porous, which is beneficial for achieving higher voltages by means of triboelectricity. In particular, triboelectricity generated by our biopolymer-based TENGs revealed that they hold great promise as sustainable and environmentally friendly self-powered devices for biomedical applications with the highest efficiency in their class. Moreover, these are the first nanotextured plant-derived biopolymer-made TENGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA