Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626765

RESUMO

Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.

2.
Nat Commun ; 14(1): 2847, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225734

RESUMO

Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.


Assuntos
DNA Mitocondrial , Nucleotídeos , Mitocôndrias , Nucleotidiltransferases , Proteínas Amiloidogênicas , Cromogranina A , Fosfolipases
3.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34292306

RESUMO

γ-Secretase affects many physiological processes through targeting >100 substrates; malfunctioning links γ-secretase to cancer and Alzheimer's disease. The spatiotemporal regulation of its stoichiometric assembly remains unresolved. Fractionation, biochemical assays, and imaging support prior formation of stable dimers in the ER, which, after ER exit, assemble into full complexes. In vitro ER budding shows that none of the subunits is required for the exit of others. However, knockout of any subunit leads to the accumulation of incomplete subcomplexes in COPII vesicles. Mutating a DPE motif in presenilin 1 (PSEN1) abrogates ER exit of PSEN1 and PEN-2 but not nicastrin. We explain this by the preferential sorting of PSEN1 and nicastrin through Sec24A and Sec24C/D, respectively, arguing against full assembly before ER exit. Thus, dimeric subcomplexes aided by Sec24 paralog selectivity support a stepwise assembly of γ-secretase, controlling final levels in post-Golgi compartments.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Presenilina-1/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Animais , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Linhagem Celular , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Endopeptidases/química , Endopeptidases/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Modelos Moleculares , Neurônios/citologia , Presenilina-1/química , Presenilina-1/genética , Cultura Primária de Células , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Ratos , Ratos Wistar , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
J Biol Chem ; 296: 100182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310703

RESUMO

Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Mitoguazona/farmacologia , Mutação , Sequenciamento Completo do Genoma/métodos
5.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32631487

RESUMO

γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer's disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting 'hotspots' or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Presenilina-1/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia , Presenilina-1/metabolismo
6.
Semin Cell Dev Biol ; 105: 12-26, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32146031

RESUMO

γ-Secretase cleavage is essential for many biological processes and its dysregulation is linked to disease, including cancer and Alzheimer's disease. Therefore, understanding the regulation of its activity is of major importance to improve drug design and develop novel therapeutics. γ-Secretase belongs to the family of intramembrane cleaving proteases (i-CLiPs), which cleaves its substrates in a process termed regulated intramembrane proteolysis (RIP). During RIP, type-I transmembrane proteins are first cleaved within their ectodomain by a sheddase and then within their transmembrane domain by γ-secretase. γ-Secretase is composed of four integral membrane proteins that are all essential for its function: presenilin (PSEN), anterior pharynx defective 1 (APH1), nicastrin (NCT) and presenilin enhancer 2 (PEN-2). Given the presence of two PSEN homologues (PSEN1 & 2) and several APH1 isoforms, a heterogeneity exists in cellular γ-secretase complexes. It is becoming clear that each of these complexes has overlapping as well as distinct biological characteristics. This review summarizes our current knowledge on complex formation, trafficking, subcellular localization, interactors and the structure of γ-secretase, with a focus, when possible or known, on the contribution of PSEN1 and PSEN2 herein.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Biologia Celular/normas , Presenilinas/metabolismo , Humanos
8.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709920

RESUMO

The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Flavoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Amiloide/metabolismo , Animais , Células Cultivadas , Flavoproteínas/genética , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Melanócitos/patologia , Melanossomas/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatases de Fosfoinositídeos/genética , Transporte Proteico , Epitélio Pigmentado da Retina/patologia , Antígeno gp100 de Melanoma/metabolismo
9.
Eur J Cell Biol ; 96(5): 432-439, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28413120

RESUMO

Proprotein Convertase 7 (PC7) is a Furin-like endoprotease that cleaves precursor proteins at basic amino acids. PC7 is concentrated in the trans-Golgi network (TGN) but it shuttles between the plasma membrane and the TGN depending on sequences in the cytoplasmic tail. A short region containing a three amino acids motif, P724-L725-C726, is essential and sufficient for internalization of PC7 but not for TGN localization, which requires the additional presence of the juxtamembrane region. In this study we have investigated the contribution of a cluster of basic amino acids and two reversibly palmitoylated cysteine residues to endocytic trafficking. Stable cell lines overexpressing chimeric proteins (CD25 and CD46) containing the cytoplasmic domain of PC7 in which the basic cluster alone or together with both palmitoylated cysteines are mutated showed enhanced surface expression as demonstrated by immunofluorescence experiments and surface biotinylation. The mutant proteins no longer recycled to the TGN in antibody uptake experiments and accumulated in an endosomal compartment. Recycling of wild type PC7 to the TGN is blocked by nocodazole, suggesting that PC7 shuttles to the TGN via late endosomes, similar to Furin. Unlike furin, however, PC7 was found to recycle to a region within the TGN, which is deficient in sialyltransferase, as shown by resialylation experiments. In conclusion, a novel motif, composed of a basic amino acid cluster and two palmitoylated cysteines are essential for TGN localization and endocytic trafficking.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Subtilisinas/metabolismo , Rede trans-Golgi/metabolismo , Aminoácidos Básicos/metabolismo , Animais , Células Cultivadas , Cisteína/metabolismo , Lipoilação , Transporte Proteico/fisiologia , Ratos
10.
Mol Neurodegener ; 12(1): 25, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28279219

RESUMO

BACKGROUND: The mechanisms behind Aß-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aß production by interacting to γ-secretase. METHODS: We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. RESULTS: Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aß levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. CONCLUSIONS: TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Tetraspaninas/metabolismo , Animais , Western Blotting , Exossomos/metabolismo , Exossomos/ultraestrutura , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Sci Rep ; 7: 41408, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134274

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions.


Assuntos
Metabolismo dos Lipídeos , Lisossomos/patologia , Glicoproteínas de Membrana/deficiência , Proteômica , Autofagossomos/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Dextranos/química , Endossomos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Nanopartículas de Magnetita/química , Glicoproteínas de Membrana/metabolismo , Nanopartículas/ultraestrutura , Proteína C1 de Niemann-Pick , Proteoma/metabolismo , Esteróis/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
13.
PLoS Comput Biol ; 12(9): e1005095, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27603951

RESUMO

Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.


Assuntos
Membrana Celular/química , Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Lipídeos/análise , Proteínas de Membrana/análise , Algoritmos , Animais , Células Cultivadas , Lipídeos/química , Proteínas de Membrana/química , Camundongos , Microscopia de Fluorescência , Software
14.
Cell ; 166(1): 193-208, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27293189

RESUMO

γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aß that contains longer Aß; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aß further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aß42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/análise , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-2/análise , Complexo 1 de Proteínas Adaptadoras/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Endossomos/química , Humanos , Lisossomos/química , Camundongos , Presenilina-1/análise , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/química , Presenilina-2/genética , Presenilina-2/metabolismo , Ratos , Especificidade por Substrato
15.
Biochim Biophys Acta ; 1828(12): 2815-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24099003

RESUMO

γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already >15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Presenilina-1/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Embrião de Mamíferos , Homeostase , Humanos , Presenilina-1/química , Presenilina-1/genética , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteólise , Receptores Notch/genética , Receptores Notch/metabolismo , Especificidade por Substrato
16.
EMBO J ; 31(15): 3252-69, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22781129

RESUMO

Dendritic filopodia are dynamic structures thought to be the precursors of spines during synapse development. Morphological maturation to spines is associated with the stabilization and strengthening of synapses, and can be altered in various neurological disorders. Telencephalin (TLN/intercellular adhesion molecule-5 (ICAM5)) localizes to dendritic filopodia, where it facilitates their formation/maintenance, thereby slowing spine morphogenesis. As spines are largely devoid of TLN, its exclusion from the filopodia surface appears to be required in this maturation process. Using HeLa cells and primary hippocampal neurons, we demonstrate that surface removal of TLN involves internalization events mediated by the small GTPase ADP-ribosylation factor 6 (ARF6), and its activator EFA6A. This endocytosis of TLN affects filopodia-to-spine transition, and requires Rac1-mediated dephosphorylation/release of actin-binding ERM proteins from TLN. At the somato-dendritic surface, TLN and EFA6A are confined to distinct, flotillin-positive membrane subdomains. The co-distribution of TLN with this lipid raft marker also persists during its endosomal targeting to CD63-positive late endosomes. This suggests a specific microenvironment facilitating ARF6-mediated mobilization of TLN that contributes to promotion of dendritic spine development.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Moléculas de Adesão Celular/metabolismo , Dendritos/fisiologia , Espinhas Dendríticas/metabolismo , Endossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pseudópodes/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Microambiente Celular/genética , Microambiente Celular/fisiologia , Dendritos/genética , Dendritos/metabolismo , Espinhas Dendríticas/genética , Espinhas Dendríticas/fisiologia , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Cultura Primária de Células , Transporte Proteico/genética , Pseudópodes/genética , Pseudópodes/fisiologia , Homologia de Sequência de Aminoácidos
17.
FASEB J ; 26(9): 3765-78, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22661005

RESUMO

Presenilins (PSENs) form the catalytic component of the γ-secretase complex, responsible for intramembrane proteolysis of amyloid precursor protein (APP) and Notch, among many other membrane proteins. Previously, we identified a PSEN1-binding domain in APP, encompassing half of the transmembrane domain following the amyloid ß (Aß) sequence. Based on this, we designed peptides mimicking this interaction domain with the aim to selectively block APP processing and Aß generation through interfering with enzyme-substrate binding. We identified a peptide sequence that, when fused to a virally derived translocation peptide, significantly lowered Aß production (IC(50): 317 nM) in cell-free and cell-based assays using APP-carboxy terminal fragment as a direct γ-secretase substrate. Being derived from the APP sequence, this inhibitory peptide did not affect NotchΔE γ-cleavage, illustrating specificity and potential therapeutic value. In cell-based assays, the peptide strongly suppressed APP shedding, demonstrating that it exerts the inhibitory effect already upstream of γ-secretase, most likely through steric hindrance.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Presenilinas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Ressonância de Plasmônio de Superfície
18.
J Cell Sci ; 125(Pt 9): 2257-66, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22357945

RESUMO

Visualization of organelles and molecules at nanometer resolution is revolutionizing the biological sciences. However, such technology is still limited for many cell biologists. We present here a novel approach using photobleaching microscopy with non-linear processing (PiMP) for sub-diffraction imaging. Bleaching of fluorophores both within the single-molecule regime and beyond allows visualization of stochastic representations of sub-populations of fluorophores by imaging the same region over time. Our method is based on enhancing the probable positions of the fluorophores underlying the images. The random nature of the bleached fluorophores is assessed by calculating the deviation of the local actual bleached fluorescence intensity to the average bleach expectation as given by the overall decay of intensity. Subtracting measured from estimated decay images yields differential images. Non-linear enhancement of maxima in these diffraction-limited differential images approximates the positions of the underlying structure. Summing many such processed differential images yields a super-resolution PiMP image. PiMP allows multi-color, three-dimensional sub-diffraction imaging of cells and tissues using common fluorophores and can be implemented on standard wide-field or confocal systems.


Assuntos
Fibroblastos/ultraestrutura , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Animais , Corantes Fluorescentes , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Fotodegradação , Processos Estocásticos
19.
Proc Natl Acad Sci U S A ; 108(34): E559-68, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825135

RESUMO

Amyloid ß (Aß) peptides, the primary constituents of senile plaques and a hallmark in Alzheimer's disease pathology, are generated through the sequential cleavage of amyloid precursor protein (APP) by ß-site APP cleaving enzyme 1 (BACE1) and γ-secretase. The early endosome is thought to represent a major compartment for APP processing; however, the mechanisms of how BACE1 encounters APP are largely unknown. In contrast to APP internalization, which is clathrin-dependent, we demonstrate that BACE1 is sorted to early endosomes via a route controlled by the small GTPase ADP ribosylation factor 6 (ARF6). Altering ARF6 levels or its activity affects endosomal sorting of BACE1, and consequently results in altered APP processing and Aß production. Furthermore, sorting of newly internalized BACE1 from ARF6-positive towards RAB GTPase 5 (RAB5)-positive early endosomes depends on its carboxyterminal short acidic cluster-dileucine motif. This ARF6-mediated sorting of BACE1 is confined to the somatodendritic compartment of polarized neurons in agreement with Aß peptides being primarily secreted from here. These results demonstrate a spatial separation between APP and BACE1 during surface-to-endosome transport, suggesting subcellular trafficking as a regulatory mechanism for this proteolytic processing step. It thereby provides a novel avenue to interfere with Aß production through a selective modulation of the distinct endosomal transport routes used by BACE1 or APP.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Endossomos/enzimologia , Processamento de Proteína Pós-Traducional , Fator 6 de Ribosilação do ADP , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide/química , Animais , Antígenos CD59/metabolismo , Compartimento Celular , Polaridade Celular , Dendritos/metabolismo , Endocitose , Células HeLa , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Leucina/metabolismo , Camundongos , Modelos Biológicos , Transporte Proteico , Ratos , Receptores da Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
20.
J Biol Chem ; 286(10): 8677-8687, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21209097

RESUMO

ß-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes. mAb 1A11 inhibited BACE1 in vitro using a large APP sequence based substrate (IC(50) ∼0.76 nm), in primary neurons (EC(50) ∼1.8 nm), and in mouse brain after stereotactic injection. Paradoxically, mAb 1A11 increased BACE1 activity in vitro when a short synthetic peptide was used as substrate, indicating that mAb 1A11 does not occupy the active-site. Epitope mapping revealed that mAb 1A11 binds to adjacent loops D and F, which together with nearby helix A, distinguishes BACE1 from other aspartyl proteases. Interestingly, mutagenesis of loop F and helix A decreased or increased BACE1 activity, identifying them as enzymatic regulatory elements and as potential alternative sites for inhibitor design. In contrast, mAb 5G7 was a potent BACE1 inhibitor in cell-free enzymatic assays (IC(50) ∼0.47 nm) but displayed no inhibitory effect in primary neurons. Its epitope, a surface helix 299-312, is inaccessible in membrane-anchored BACE1. Remarkably, mutagenesis of helix 299-312 strongly reduced BACE1 ectodomain shedding, suggesting that this helix plays a role in BACE1 cellular biology. In conclusion, this study generated highly selective and potent BACE1 inhibitory mAbs, which recognize unique structural and functional elements in BACE1, and uncovered interesting alternative sites on BACE1 that could become targets for drug development.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Neutralizantes/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/enzimologia , Neurônios/enzimologia , Inibidores de Proteases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/imunologia , Secretases da Proteína Precursora do Amiloide/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Ácido Aspártico Endopeptidases/imunologia , Encéfalo/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutagênese , Inibidores de Proteases/imunologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...