Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol ; 2022: 6178261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530374

RESUMO

Background: Chronic exposure to arsenic is a major health concern consequent upon generation of excessive reactive oxygen species. The safety of treatment with chelating agents has not been well established; therefore, there is a need for a paradigm shift in the approach to management of arsenic toxicity. Bioflavonoids are known to influence redox homeostasis in cells; the study therefore investigates the efficacy of quercetin and its zinc and iron metal complexes on sodium arsenite (NaAr)-intoxication in rats. Methods: Spectroscopic study of quercetin hydrate and its metal complexes was performed using UV-Vis and FT-IR spectrometer. Furthermore, twenty male Wistar rats were obtained and equally divided into four groups, treated orally and daily for 28 days with 10 mg/kg NaAr, 30 mg/kg quercetin, quercetin-zinc, and quercetin-iron separately. Five more rats were used as control. Plasmatic aspartate transferase (AST), alanine transferase (ALT), creatinine (CREA), and total protein (TP) were estimated. Levels of kidney and liver lipid peroxidation (LPO), glutathione (GSH), catalase (CAT), and glutathione-S-transferase (GST) were determined. Histology was used to view the lesions. Results: Treatment of arsenic-toxicity with quercetin and its complexes decreased the activities of ALT, AST, CREA, TP, CAT, and GST and concentration of LPO and GSH. Quercetin-zn treatment showed a better result than quercetin-iron in the liver. Histology results showed absence of lesions in quercetin zinc and iron treatment in both the kidney and the liver. Conclusion: Quercetin zinc and iron increased the bioavailability of quercetin and therefore could be relevant as adjuvants in arsenic poisoning.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335771

RESUMO

Renewable biowaste-derived carbon dots have garnered immense interest owing to their exceptional optical, fluorescence, chemical, and environmentally friendly attributes, which have been exploited for the detection of metals, non-metals, and organics in the environment. In the present study, water-soluble fluorescent carbon dots (CDs) were synthesized via facile green microwave pyrolysis of pine-cone biomass as precursors, without any chemical additives. The synthesized fluorescent pine-cone carbon dots (PC-CDs) were spherical in shape with a bimodal particle-size distribution (average diameters of 15.2 nm and 42.1 nm) and a broad absorption band of between 280 and 350 nm, attributed to a π-π* and n-π* transition. The synthesized PC-CDs exhibited the highest fluorescent (FL) intensity at an excitation wavelength of 360 nm, with maximum emission of 430 nm. The synthesized PC-CDs were an excellent fluorescent probe for the selective detection of Cu2+ in aqueous solution, amidst the presence of other metal ions. The FL intensity of PC-CDs was exceptionally quenched in the presence of Cu2+ ions, with a low detection limit of 0.005 µg/mL; this was largely ascribed to Cu2+ ion binding interactions with the enriched surface functional groups on the PC-CDs. As-synthesized PC-CDs are an excellent, cost effective, and sensitive probe for detecting and monitoring Cu2+ metal ions in wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...