Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(2): 336-349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997254

RESUMO

There is limited guidance on exploiting the genome-wide loss-of-function CRISPR screens in cancer Dependency Map (DepMap) to identify new targets for individual cancer types. This study integrated multiple tools to filter these data in order to seek new therapeutic targets specific to head and neck squamous cell carcinoma (HNSCC). The resulting pipeline prioritized 143 targetable dependencies that represented both well-studied targets and emerging target classes like mitochondrial carriers and RNA-binding proteins. In total, 14 targets had clinical inhibitors used for other cancers or nonmalignant diseases that hold near-term potential to repurpose for HNSCC therapy. Comparing inhibitor response data that were publicly available for 13 prioritized targets between the cell lines with high vs. low dependency on each target uncovered novel therapeutic potential for the PAK2 serine/threonine kinase. PAK2 gene dependency was found to be associated with wild-type p53, low PAK2 mRNA, and diploid status of the 3q amplicon containing PAK2. These findings establish a generalizable pipeline to prioritize clinically relevant targets for individual cancer types using DepMap. Its application to HNSCC highlights novel relevance for PAK2 inhibition and identifies biomarkers of PAK2 inhibitor response.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Serina-Treonina Quinases , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Quinases Ativadas por p21/genética
2.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134662

RESUMO

Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator-activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6's interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.


Assuntos
Neoplasias Orofaríngeas , Infecções por Papillomavirus , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Antioxidantes/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Neoplasias Orofaríngeas/terapia , PPAR gama/metabolismo , Infecções por Papillomavirus/complicações , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53 , Receptor ERRalfa Relacionado ao Estrogênio
3.
Mol Oncol ; 13(5): 1092-1109, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30747484

RESUMO

Cadherin-23 (Cdh23), a long-chain non-classical cadherin, exhibits strong homophilic and heterophilic binding. The physiological relevance of strong heterophilic binding with protocadherin-15 at neuroepithelial tip links is well-studied. However, the role of Cdh23 homodimers in physiology is less understood, despite its widespread expression at the cell boundaries of various human and mouse tissues, including kidney, muscle, testes, and heart. Here, we performed immunofluorescence studies that revealed that Cdh23 is present as distinct puncta at the cell-cell boundaries of cancer cells. Analysis of patient data and quantitative estimation of Cdh23 in human tissues (normal and tumor) also indicated that Cdh23 is down-regulated via promoter methylation in lung adenocarcinoma (AD) and esophageal squamous cell carcinoma (SCC) cells; we also observed a clear inverse correlation between Cdh23 expression and cancer metastasis. Using HEK293T cells and four types of cancer cells differentially expressing Cdh23, we observed that cell migration was faster in cells with reduced levels of Cdh23 expression. The cell migration rate in cancer cells is further accelerated by the presence of excretory isoforms of Cdh23, which loosen its cell-adhesion ability by competitive binding. Overall, our data indicate the role of Cdh23 as a suppressor of cell migration.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Caderinas/metabolismo , Movimento Celular , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Multimerização Proteica , Células A549 , Adenocarcinoma de Pulmão/patologia , Proteínas Relacionadas a Caderinas , Agregação Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Células HeLa , Humanos , Neoplasias Pulmonares/patologia , Células MCF-7 , Células PC-3
4.
Carbohydr Polym ; 192: 126-134, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29691004

RESUMO

In this report, we have modified bacterial cellulose to a metal binding matrix by covalently conjugating physiological metal chelators known as metallothioneins. The hydroxyl groups of the native bacterial cellulose from Gluconobacter xylinus are epoxidized, followed by the covalent conjugation with the amine groups of the proteins. For the first time, a covalent conjugation of protein with bacterial cellulose is achieved using the epoxy-amine conjugation chemistry. Using this protocol, 50% mass by mass of the metallothionein could be attached to bacterial cellulose. The morphological features and porosity of the modified cellulose are different compared to pristine bacterial cellulose. Also, the conjugated material has better thermal stability. A five-fold enhancement in the metal binding capacity of the metallothionein conjugated bacterial cellulose is achieved as compared to pristine bacterial cellulose. Cellular metabolic assay and membrane integrity assay on MCF and HeLa cell lines showed no significant toxicity of the conjugate material. This bacterial cellulose-metallothionein conjugate can be explored for health care applications where management of metal toxicity is crucial. Further, the epoxy-amine chemistry for covalent conjugation of protein can be applied for several other types of proteins to develop specific functional biocompatible and biodegradable cellulose matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...