Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171786, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508248

RESUMO

Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.


Assuntos
Briófitas , Cianobactérias , Animais , Ecossistema , Solo/química , Biota , Microbiologia do Solo
2.
J Clin Med ; 13(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398333

RESUMO

The use of choroidal vascularization to diagnose and follow-up ocular and systemic pathologies has been consolidated in recent research. Unfortunately, the choroidal parameters can be different depending on the lighting settings of optical coherence tomography (OCT) images. The purpose of this study was to examine whether the brightness of OCT images could influence the measurements of choroidal parameters obtained by processing and analyzing scientific images with the ImageJ program. In this observational, prospective, non-randomized study, 148 eyes of 74 patients with a mean age of 30.7 ± 8.5 years (ranging from 23 to 61 years) were assessed. All patients underwent a complete ophthalmological examination including slit lamp, fundus oculi, ocular biometry, corneal tomography and spectral domain (SD) OCT evaluations of the foveal region in the enhanced depth imaging (EDI) mode. OCT images at two different brightness levels were obtained. The total choroidal area (TCA), choroidal vascularity index (CVI), stromal choroidal area (SCA) and luminal choroidal area (LCA) at both lower and higher brightness levels were measured. To avoid the bias of operator-dependent error, the lower and higher brightness TCAs were obtained using two methods: the manual tracking mode and fixed area. At the two different brightness levels, LCA, SCA and CVI measurements showed statistically significant changes (p < 0.05), whereas the TCA differences were not statistically significant (p > 0.05). According to the results of this study, highlighting that brightness could affect LCA, SCA and CVI parameters, care should be taken during OCT image acquisition.

4.
Environ Microbiome ; 18(1): 54, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328770

RESUMO

BACKGROUND: Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS: We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS: Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.

5.
FEMS Microbiol Ecol ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160346

RESUMO

In the ice-free areas of Victoria Land in continental Antarctica, where the conditions reach the limits for life sustainability, highly adapted and extreme-tolerant microbial communities exploit the last habitable niches inside porous rocks (i.e. cryptoendolithic communities). These guilds host the main standing biomass and principal, if not sole, contributors to environmental/biogeochemical cycles, driving ecosystem processes and functionality in these otherwise dead lands. Although knowledge advances on their composition, ecology, genomic and metabolic features, a large-scale perspective of occurring interactions and interconnections within and between endolithic fungal assemblages is still lacking to date. Unravelling the tight relational network among functional guilds in the Antarctic cryptoendolithic communities may represent a main task. Aiming to fill this knowledge gap, we performed a correlation-network analysis based on amplicon-sequencing data of 74 endolithic microbiomes collected throughout Victoria Land. Endolithic communities' compositional pattern was largely dominated by Lichenized fungi group (83.5%), mainly represented by Lecanorales and Lecideales, followed by Saprotrophs (14.2%) and RIF+BY (2.4%) guilds led by Tremellales and Capnodiales respectively. Our findings highlighted that fungal functional guilds' relational spectrum was dominated by cooperative interactions led by lichenised and black fungi, deeply engaged in community trophic sustain and protection, respectively. On the other hand, a few negative correlations found may help in preserving niche boundaries between microbes living in such strict spatial association.

6.
J Fungi (Basel) ; 9(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37108890

RESUMO

Rock glaciers are relatively common in Antarctic permafrost areas and could be considered postglacial cryogenic landforms. Although the extensive presence of rock glaciers, their chemical-physical and biotic composition remain scarce. Chemical-physical parameters and fungal community (by sequencing the ITS2 rDNA, Illumina MiSeq) parameters of a permafrost core were studied. The permafrost core, reaching a depth of 6.10 m, was divided into five units based on ice content. The five units (U1-U5) of the permafrost core exhibited several significant (p < 0.05) differences in terms of chemical and physical characteristics, and significant (p < 0.05) higher values of Ca, K, Li, Mg, Mn, S, and Sr were found in U5. Yeasts dominated on filamentous fungi in all the units of the permafrost core; additionally, Ascomycota was the prevalent phylum among filamentous forms, while Basidiomycota was the dominant phylum among yeasts. Surprisingly, in U5 the amplicon sequence variants (ASVs) assigned to the yeast genus Glaciozyma represented about two-thirds of the total reads. This result may be considered extremely rare in Antarctic yeast diversity, especially in permafrost habitats. Based on of the chemical-physical composition of the units, the dominance of Glaciozyma in the deepest unit was correlated with the elemental composition of the core.

7.
8.
Environ Res ; 229: 115891, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059323

RESUMO

Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.


Assuntos
Microbiota , Microplásticos , Plásticos , Solo , Dióxido de Carbono , Microbiologia do Solo , Bactérias/genética
10.
Environ Microbiol ; 24(9): 4178-4192, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691701

RESUMO

The impact of global warming on biological communities colonizing European alpine ecosystems was recently studied. Hexagonal open top chambers (OTCs) were used for simulating a short-term in situ warming (estimated around 1°C) in some alpine soils to predict the impact of ongoing climate change on resident microbial communities. Total microbial DNA was extracted from soils collected either inside or outside the OTCs over 3 years of study. Bacterial and fungal rRNA copies were quantified by qPCR. Metabarcoding sequencing of taxonomy target genes was performed (Illumina MiSeq) and processed by bioinformatic tools. Alpha- and beta-diversity were used to evaluate the structure of bacterial and fungal communities. qPCR suggests that, although fluctuations have been observed between soils collected either inside and outside the OTCs, the simulated warming induced a significant (p < 0.05) shift only for bacterial abundance. Likewise, significant (p < 0.05) changes in bacterial community structure were detected in soils collected inside the OTCs, with a clear increase of oligotrophic taxa. On the contrary, fungal diversity of soils collected either inside and outside the OTCs did not exhibit significant (p < 0.05) differences, suggesting that the temperature increase in OTCs compared to ambient conditions was not sufficient to change fungal communities.


Assuntos
Microbiota , Micobioma , Bactérias/genética , Mudança Climática , Microbiota/genética , Solo/química , Microbiologia do Solo
12.
Invest Ophthalmol Vis Sci ; 63(5): 21, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35583891
14.
Microb Ecol ; 83(2): 328-339, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34081148

RESUMO

The diversity and composition of endolithic bacterial diversity of several locations in McMurdo Dry Valleys (Continental Antarctica) were explored using amplicon sequencing, targeting the V3 and V4 of the 16S region. Despite the increasing interest in edaphic factors that drive bacterial community composition in Antarctic rocky communities, few researchers focused attention on the direct effects of sun exposure on bacterial diversity; we herein reported significant differences in the northern and southern communities. The analysis of ß-diversity showed significant differences among sampled localities. For instance, the most abundant genera found in the north-exposed rocks were Rhodococcus and Blastococcus in Knobhead Mt.; Ktedonobacter and Cyanobacteria Family I Group I in Finger Mt.; Rhodococcus and Endobacter in University Valley; and Segetibacter and Tetrasphaera in Siegfried Peak samples. In south-exposed rocks, instead, the most abundant genera were Escherichia/Shigella and Streptococcus in Knobhead Mt.; Ktedonobacter and Rhodococcus in Finger Mt.; Ktedonobacter and Roseomonas in University Valley; and Blastocatella, Cyanobacteria Family I Group I and Segetibacter in Siegfried Peak. Significant biomarkers, detected by the Linear discriminant analysis Effect Size, were also found among north- and south-exposed communities. Besides, the large number of positive significant co-occurrences may suggest a crucial role of positive associations over competitions under the harsher conditions where these rock-inhabiting microorganisms spread. Although the effect of geographic distances in these extreme environments play a significant role in shaping biodiversity, the study of an edaphic factor, such as solar exposure, adds an important contribution to the mosaic of microbial biodiversity of Antarctic bacterial cryptoendolithic communities.


Assuntos
Cianobactérias , Líquens , Regiões Antárticas , Biodiversidade , Cianobactérias/genética , Humanos , Luz Solar
15.
Int J Syst Evol Microbiol ; 70(8): 4704-4713, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32697190

RESUMO

Five yeast strains were isolated from soil and sediments collected from Alps and Apennines glaciers during sampling campaigns carried out in summer 2007 and 2017, respectively. Based on morphological and physiological tests and on phylogenetic analyses reconstructed with ITS and D1/D2 sequences, the five strains were considered to belong to two related but hitherto unknown species within the genus Mrakia, in an intermediate position between Mrakia cryoconiti and Mrakia arctica. The names Mrakia stelviica (holotype DBVPG 10734T) and Mrakia montana (holotype DBVPG 10736T) are proposed for the two novel species and a detailed description of their morphological, physiological and phylogenetic features are presented. Both species fermented glucose, sucrose and trehalose, which is an uncommon feature in basidiomycetous yeasts, and showed septate hyphae with teliospore formation.


Assuntos
Basidiomycota/classificação , Camada de Gelo/microbiologia , Filogenia , Animais , Basidiomycota/isolamento & purificação , DNA Fúngico/genética , Itália , Técnicas de Tipagem Micológica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Environ Microbiol ; 22(8): 3463-3477, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510727

RESUMO

A perennially frozen lake at Boulder Clay site (Victoria Land, Antarctica), characterized by the presence of frost mounds, have been selected as an in situ model for ecological studies. Different samples of permafrost, glacier ice and brines have been studied as a unique habitat system. An additional sample of brines (collected in another frozen lake close to the previous one) was also considered. Alpha- and beta-diversity of fungal communities showed both intra- and inter-cores significant (p < 0.05) differences, which suggest the presence of interconnection among the habitats. Therefore, the layers of frost mound and the deep glacier could be interconnected while the brines could probably be considered as an open habitat system not interconnected with each other. Moreover, the absence of similarity between the lake ice and the underlying permafrost suggested that the lake is perennially frozen based. The predominance of positive significant (p < 0.05) co-occurrences among some fungal taxa allowed to postulate the existence of an ecological equilibrium in the habitats systems. The positive significant (p < 0.05) correlation between salt concentration, total organic carbon and pH, and some fungal taxa suggests that a few abiotic parameters could drive fungal diversity inside these ecological niches.


Assuntos
Fungos/classificação , Camada de Gelo/microbiologia , Pergelissolo/microbiologia , Regiões Antárticas , Argila , Ecossistema , Fungos/genética , Camada de Gelo/química , Lagos/química , Lagos/microbiologia , Micobioma , Compostos Orgânicos/análise , Pergelissolo/química , Salinidade , Sais/análise
17.
Microorganisms ; 8(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093408

RESUMO

The involvement of DNA methylation in the response to cold stress of two different yeast species (Naganishia antarctica, psychrophilic, and Naganishia albida, psychrotolerant), exhibiting different temperature aptitudes, has been studied. Consecutive incubations at respective optimum temperatures, at 4 °C (cold stress) and at optimum temperatures again, were performed. After Methylation Sensitive Amplified Polymorphism (MSAP) fingerprints a total of 550 and 423 clear and reproducible fragments were amplified from N. antarctica and N. albida strains, respectively. The two Naganishia strains showed a different response in terms of level of DNA methylation during cold stress and recovery from cold stress. The percentage of total methylated fragments in psychrophilic N. antarctica did not show any significant change. On the contrary, the methylation of psychrotolerant N. albida exhibited a nonsignificant increase during the incubation at 4 °C and continued during the recovery step, showing a significant difference if compared with control condition, resembling an uncontrolled response to cold stress. A total of 12 polymorphic fragments were selected, cloned, and sequenced. Four fragments were associated to genes encoding for elongation factor G and for chitin synthase export chaperon. To the best of our knowledge, this is the first study on DNA methylation in the response to cold stress carried out by comparing a psychrophilic and a psychrotolerant yeast species.

18.
Food Microbiol ; 76: 354-362, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166161

RESUMO

Due to the increasing consumer demand, the production of low alcoholic and non alcoholic beer is the new goal of the present brewing producers. Although the beer with reduced alcohol content is currently obtained by physical methods, the use of non-Saccharomyces yeast, with low fermentations capacities, may represent an interesting biological approach. In this study the ethanol content and the volatile profile of a beer obtained using the basidiomycetous psychrophilic yeast strain Mrakia gelida DBVPG 5952 was compared with that produced by a commercial starter for low alcohol beers, Saccharomycodes ludwigii WSL17. The two beers were characterized by a low alcohol content (1.40% and 1.32% v/v) and by a low diacetyl production (5.04 and 5.20 µg/L). However, the organoleptic characteristics of the beer obtained using M. gelida are more appreciated by the panelists, in comparison to the analogous produced with the commercial strain of S. ludwigii.


Assuntos
Álcoois/análise , Basidiomycota/metabolismo , Cerveja/análise , Álcoois/metabolismo , Cerveja/microbiologia , Diacetil/análise , Diacetil/metabolismo , Fermentação , Microbiologia de Alimentos , Humanos , Hypericum/química , Hypericum/metabolismo , Odorantes/análise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Paladar
19.
Biotechnol Biofuels ; 11: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796088

RESUMO

BACKGROUND: Some lignocellulosic biomass feedstocks occur in Mediterranean Countries. They are still largely unexploited and cause considerable problems due to the lack of cost-effective harvesting, storage and disposal technologies. Recent studies found that some basidiomycetous yeasts are able to accumulate high amount of intracellular lipids for biorefinery processes (i.e., biofuels and biochemicals). Accordingly, the above biomass feedstocks could be used as carbon sources (after their pre-treatment and hydrolysis) for lipid accumulation by oleaginous yeasts. RESULTS: Cardoon stalks, stranded driftwood and olive tree pruning residues were pre-treated with steam-explosion and enzymatic hydrolysis for releasing free mono- and oligosaccharides. Lipid accumulation tests were performed at two temperatures (20 and 25 °C) using Leucosporidium creatinivorum DBVPG 4794, Naganishia adeliensis DBVPG 5195 and Solicoccozyma terricola DBVPG 5870. S. terricola grown on cardoon stalks at 20 °C exhibited the highest lipid production (13.20 g/l), a lipid yield (28.95%) close to the maximum theoretical value and a lipid composition similar to that found in palm oil. On the contrary, N. adeliensis grown on stranded driftwood and olive tree pruning residues exhibited a lipid composition similar to those of olive and almonds oils. A predictive evaluation of the physical properties of the potential biodiesel obtainable by lipids produced by tested yeast strains has been reported and discussed. CONCLUSIONS: Lipids produced by some basidiomycetous yeasts grown on Mediterranean lignocellulosic biomass feedstocks could be used as supplementary sources of oils for producing biofuels and biochemicals.

20.
Sci Rep ; 8(1): 6582, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700429

RESUMO

Brines are hypersaline solutions which have been found within the Antarctic permafrost from the Tarn Flat area (Northern Victoria Land). Here, an investigation on the possible presence and diversity of fungal life within those peculiar ecosystems has been carried out for the first time. Brines samples were collected at 4- and 5-meter depths (TF1 and TF2, respectively), from two brines separated by a thin ice layer. The samples were analyzed via Illumina MiSeq targeting the ITS region specific for both yeasts and filamentous fungi. An unexpected high alpha diversity was found. Beta diversity analysis revealed that the two brines were inhabited by two phylogenetically diverse fungal communities (Unifrac value: 0.56, p value < 0.01; Martin's P-test p-value < 0.001) characterized by several specialist taxa. The most abundant fungal genera were Candida sp., Leucosporidium sp., Naganishia sp. and Sporobolomyces sp. in TF1, and Leucosporidium sp., Malassezia sp., Naganishia sp. and Sporobolomyces sp. in TF2. A few hypotheses on such differentiation have been done: i) the different chemical and physical composition of the brines; ii) the presence in situ of a thin layer of ice, acting as a physical barrier; and iii) the diverse geological origin of the brines.


Assuntos
Biodiversidade , Microbiologia Ambiental , Fungos/classificação , Camada de Gelo/microbiologia , Micobioma , Sais/química , Regiões Antárticas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...