Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 1602-1607, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165025

RESUMO

Alkali halides are simple inorganic compounds extensively used as surface modifiers in optoelectronic devices. In perovskite solar cells (PSCs), they act as interlayers between the light absorber material and the charge selective layers improving their contact quality. They introduce surface dipoles that enable the fine tuning of the relative band alignment and passivate surface defects, a well-known drawback of hybrid organic-inorganic perovskites, that is responsible for most of the issues hampering the long-term performances. Reducing the thickness of such salt-based insulating layer might be beneficial in terms of charge transfer between the perovskite and the electron/hole transport layers. In this context, here we apply density functional theory (DFT) to characterize the structure and the electronic features of atom-thin layers of NaCl adsorbed on the methylammonium lead iodide (MAPI) perovskite. We analyze two different models of MAPI surface terminations and find unexpected structural reconstructions arising at the interface. Unexpectedly, we find an exotic honeycomb-like structuring of the salt, also recently observed in experiments on a diamond substrate. We also investigate how the salt affects the perovskite electronic properties that are key to control the charge dynamics at the interface. Moreover, we also assess the salt ability to improve the defect tolerance of the perovskite surface. With these results, we derive new hints regarding the potential benefits of using an atom-thin layer of alkali halides in PSCs.

2.
ACS Energy Lett ; 8(10): 4304-4314, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854052

RESUMO

In perovskite solar cells (PSCs) energy level alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3 perovskite and its hole-selective contact (spiro-OMeTAD), realized by the dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, with n-octylammonium iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and a high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by a transient surface photovoltage (trSPV) technique accomplished by a charge transport simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...