Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405884

RESUMO

When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.

2.
Aging Biol ; 1(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124711

RESUMO

Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in ß-cells can drive ß-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in ß-cells. Mice harboring Ercc1-deficient ß-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in ß-cells and a significant loss of ß-cell mass. Using electron microscopy, we identified ß-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some ß-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in ß-cells also resulted in loss of ß-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient ß-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive ß-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.

3.
Nature ; 594(7861): 100-105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981041

RESUMO

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Assuntos
Envelhecimento/imunologia , Envelhecimento/fisiologia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Imunossenescência/imunologia , Imunossenescência/fisiologia , Especificidade de Órgãos/imunologia , Especificidade de Órgãos/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Dano ao DNA/imunologia , Dano ao DNA/fisiologia , Reparo do DNA/imunologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Homeostase/imunologia , Homeostase/fisiologia , Sistema Imunitário/efeitos dos fármacos , Imunossenescência/efeitos dos fármacos , Masculino , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Rejuvenescimento , Sirolimo/farmacologia , Baço/citologia , Baço/transplante
4.
Metabolism ; 117: 154711, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493548

RESUMO

BACKGROUND: Type 2 diabetes (T2DM) is an age-associated disease characterized by hyperglycemia due to insulin resistance and decreased beta-cell function. DNA damage accumulation has been associated with T2DM, but whether DNA damage plays a role in the pathogenesis of the disease is unclear. Here, we used mice deficient for the DNA excision-repair gene Ercc1 to study the impact of persistent endogenous DNA damage accumulation on energy metabolism, glucose homeostasis and beta-cell function. METHODS: ERCC1-XPF is an endonuclease required for multiple DNA repair pathways and reduced expression of ERCC1-XPF causes accelerated accumulation of unrepaired endogenous DNA damage and accelerated aging in humans and mice. In this study, energy metabolism, glucose metabolism, beta-cell function and insulin sensitivity were studied in Ercc1d/- mice, which model a human progeroid syndrome. RESULTS: Ercc1d/- mice displayed suppression of the somatotropic axis and altered energy metabolism. Insulin sensitivity was increased, whereas, plasma insulin levels were decreased in Ercc1d/- mice. Fasting induced hypoglycemia in Ercc1d/- mice, which was the result of increased glucose disposal. Ercc1d/- mice exhibit a significantly reduced beta-cell area, even compared to control mice of similar weight. Glucose-stimulated insulin secretion in vivo was decreased in Ercc1d/- mice. Islets isolated from Ercc1d/- mice showed increased DNA damage markers, decreased glucose-stimulated insulin secretion and increased susceptibility to apoptosis. CONCLUSION: Spontaneous DNA damage accumulation triggers an adaptive response resulting in improved insulin sensitivity. Loss of DNA repair, however, does negatively impacts beta-cell survival and function in Ercc1d/- mice.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Resistência à Insulina/genética , Células Secretoras de Insulina/fisiologia , Insulina/genética , Envelhecimento/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Dano ao DNA/genética , Diabetes Mellitus Tipo 2/genética , Glucose/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Aging (Albany NY) ; 12(6): 4688-4710, 2020 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32201398

RESUMO

NF-κB is a transcription factor activated in response to inflammatory, genotoxic and oxidative stress and important for driving senescence and aging. Ataxia-telangiectasia mutated (ATM) kinase, a core component of DNA damage response signaling, activates NF-κB in response to genotoxic and oxidative stress via post-translational modifications. Here we demonstrate that ATM is activated in senescent cells in culture and murine tissues from Ercc1-deficient mouse models of accelerated aging, as well as naturally aged mice. Genetic and pharmacologic inhibition of ATM reduced activation of NF-κB and markers of senescence and the senescence-associated secretory phenotype (SASP) in senescent Ercc1-/- MEFs. Ercc1-/Δ mice heterozygous for Atm have reduced NF-κB activity and cellular senescence, improved function of muscle-derived stem/progenetor cells (MDSPCs) and extended healthspan with reduced age-related pathology especially age-related bone and intervertebral disc pathologies. In addition, treatment of Ercc1-/∆ mice with the ATM inhibitor KU-55933 suppressed markers of senescence and SASP. Taken together, these results demonstrate that the ATM kinase is a major mediator of DNA damage-induced, NF-κB-mediated cellular senescence, stem cell dysfunction and aging and thus represents a therapeutic target to slow the progression of aging.


Assuntos
Envelhecimento/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Senescência Celular/fisiologia , Dano ao DNA/fisiologia , NF-kappa B/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Aging Cell ; 14(4): 644-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25754370

RESUMO

The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1(-/Δ) mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1(-/∆) mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.


Assuntos
Envelhecimento/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Osteoporose/prevenção & controle , Quercetina/farmacologia , Transcriptoma , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Senescência Celular/genética , Classe I de Fosfatidilinositol 3-Quinases , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Combinação de Medicamentos , Endonucleases/genética , Endonucleases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Efrinas/genética , Efrinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/fisiopatologia , Disco Intervertebral/química , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor 2 de Ativador de Plasminogênio/genética , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...