Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971993

RESUMO

Oxytocin (OXT) neurons project to various brain regions and its receptor expression is widely distributed. Although it has been reported that OXT administration affects cognitive function, it is unclear how endogenous OXT plays roles in cognitive function. The present study examined the role of endogenous OXT in mice cognitive function. OXT neurons were specifically activated by OXT neuron-specific excitatory Designer Receptors Exclusively Activated by Designer Drug expression system and following administration of clozapine-N-oxide (CNO). Object recognition memory was assessed with the novel object recognition task (NORT). Moreover, we observed the expression of c-Fos via immunohistochemical staining to confirm neuronal activity. In NORT, the novel object exploration time percentage significantly increased in CNO-treated mice. CNO-treated mice showed a significant increase in the number of c-Fos-positive cells in the supramammillary nucleus (SuM). In addition, we found that the OXT-positive fibers from paraventricular hypothalamic nucleus (PVN) were identified in the SuM. Furthermore, mice injected locally with CNO into the SuM to activate OXTergic axons projecting from the PVN to the SuM showed significantly increased percentage time of novel object exploration. Taken together, we proposed that object recognition memory in mice could be modulated by OXT neurons in the PVN projecting to the SuM.


Assuntos
Hipotálamo , Ocitocina , Animais , Camundongos , Hipotálamo/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Ocitocina/metabolismo , Hipotálamo Posterior/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
2.
Front Mol Biosci ; 9: 1040237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419930

RESUMO

The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.

3.
Front Pharmacol ; 13: 826783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330835

RESUMO

Disulfiram is an FDA approved drug for the treatment of alcoholism. The drug acts by inhibiting aldehyde dehydrogenase, an enzyme essential to alcohol metabolism. However, a recent study has demonstrated that disulfiram also potently inhibits the cytoplasmic protein FROUNT, a common regulator of chemokine receptor CCR2 and CCR5 signaling. Several studies have reported that chemokine receptors are associated with the regulation of emotional behaviors in rodents, such as anxiety. Therefore, this study was performed to clarify the effect of disulfiram on emotional behavior in rodents. The anxiolytic-like effects of disulfiram were investigated using an elevated plus-maze (EPM) test, a typical screening model for anxiolytics. Disulfiram (40 or 80 mg/kg) significantly increased the amount of time spent in the open arms of the maze and the number of open arm entries without affecting the total open arms entries. Similar results were obtained in mice treated with a selective FROUNT inhibitor, disulfiram-41 (10 mg/kg). These disulfiram-associated behavioral changes were similar to those observed following treatment with the benzodiazepine anxiolytic diazepam (1.5 mg/kg). Moreover, disulfiram (40 mg/kg) significantly and completely attenuated increased extracellular glutamate levels in the prelimbic-prefrontal cortex (PL-PFC) during stress exposure on the elevated open-platform. However, no effect in the EPM test was seen following administration of the selective aldehyde dehydrogenase inhibitor cyanamide (40 mg/kg). In contrast to diazepam, disulfiram caused no sedation effects in the open-field, coordination disorder on a rotarod, or amnesia in a Y-maze. This is the first report suggesting that disulfiram produces anxiolytic-like effects in rodents. We found that the presynaptic inhibitory effects on glutaminergic neurons in the PL-PFC may be involved in its underlying mechanism. Disulfiram could therefore be an effective and novel anxiolytic drug that does not produce benzodiazepine-related adverse effects, such as amnesia, coordination disorder, or sedation, as found with diazepam. We propose that the inhibitory activity of disulfiram against FROUNT function provides an effective therapeutic option in anxiety.

4.
Commun Biol ; 5(1): 12, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013509

RESUMO

Tissue clearing methods are increasingly essential for the microscopic observation of internal tissues of thick biological organs. We previously developed TOMEI, a clearing method for plant tissues; however, it could not entirely remove chlorophylls nor reduce the fluorescent signal of fluorescent proteins. Here, we developed an improved TOMEI method (iTOMEI) to overcome these limitations. First, a caprylyl sulfobetaine was determined to efficiently remove chlorophylls from Arabidopsis thaliana seedlings without GFP quenching. Next, a weak alkaline solution restored GFP fluorescence, which was mainly lost during fixation, and an iohexol solution with a high refractive index increased sample transparency. These procedures were integrated to form iTOMEI. iTOMEI enables the detection of much brighter fluorescence than previous methods in tissues of A. thaliana, Oryza sativa, and Marchantia polymorpha. Moreover, a mouse brain was also efficiently cleared by the iTOMEI-Brain method within 48 h, and strong fluorescent signals were detected in the cleared brain.


Assuntos
Arabidopsis , Botânica/métodos , Diagnóstico por Imagem/métodos , Fluorescência , Animais , Botânica/instrumentação , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem/instrumentação , Camundongos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7252-7255, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892772

RESUMO

The mouse is a valuable animal model to address the neural mechanism of higher brain function and test the pharmacodynamics of new drugs. The development of novel behavioral analysis to detect subtleties of emotion is valuable for the evolution of neuroscience research and drug discovery. 3D pose estimation is expected to contribute significantly to them. Several methods for 3D pose estimation of the mouse using optical motion capture with markers and multiple cameras have been proposed, but these methods have problems such as preparing marker sets and the influence of the markers on mouse behavior. A low-cost and simple method for markerless 3D pose estimation of the mouse using a single RGB-D (Depth) camera is proposed. As a result, the proposed method improved the accuracy of limbs tracking compared to existing limbs tracking methods. In addition, this method could track other body parts (nose, base of tail) and the center of gravity.Clinical Relevance-This study could contribute to the development of neuroscience research and drug discovery by clarifying the relationship between subtle changes in mouse behavior and emotional movements.


Assuntos
Algoritmos , Corpo Humano , Animais , Extremidades , Camundongos , Movimento (Física) , Movimento
6.
J Neurochem ; 159(3): 603-617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379812

RESUMO

Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-ß (Aß) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of Aß in mouse neurons. CLA treatment did not affect the level of ß-site APP-cleaving enzyme 1 (BACE1), a component of active γ-secretase complex presenilin 1 amino-terminal fragment, or Aß protein precursor (APP) in cultured neurons. BACE1 and γ-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent Aß generation. Our findings suggest that the accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses the production of neurotoxic Aß in neurons.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Ácido Linoleico/farmacologia , Ácidos Linoleicos Conjugados/farmacologia , Neurônios/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Células Cultivadas , Suplementos Nutricionais , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fosfatidilcolinas/metabolismo
7.
Front Behav Neurosci ; 15: 680206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177481

RESUMO

Rubber hand illusion (RHI), a kind of body ownership illusion, is sometimes atypical in individuals with autism spectrum disorder; however, the brain regions associated with the illusion are still unclear. We previously reported that mice responded as if their own tails were being touched when rubber tails were grasped following synchronous stroking to rubber tails and their tails (a "rubber tail illusion", RTI), which is a task based on the human RHI; furthermore, we reported that the RTI response was diminished in Ca2+-dependent activator protein for secretion 2-knockout (Caps2-KO) mice that exhibit autistic-like phenotypes. Importance of the posterior parietal cortex in the formation of illusory perception has previously been reported in human imaging studies. However, the local neural circuits and cell properties associated with this process are not clear. Therefore, we aimed to elucidate the neural basis of the RTI response and its impairment by investigating the c-Fos expression in both wild-type (WT) and Caps2-KO mice during the task since the c-Fos expression occurred soon after the neural activation. Immediately following the delivery of the synchronous stroking to both rubber tails and actual tails, the mice were perfused. Subsequently, whole brains were cryo-sectioned, and each section was immunostained with anti-c-Fos antibody; finally, c-Fos positive cell densities among the groups were compared. The c-Fos expression in the posterior parietal cortex was significantly lower in the Caps2-KO mice than in the WT mice. Additionally, we compared the c-Fos expression in the WT mice between synchronous and asynchronous conditions and found that the c-Fos-positive cell densities were significantly higher in the claustrum and primary somatosensory cortex of the WT mice exposed to the synchronous condition than those exposed to the asynchronous condition. Hence, the results suggest that decreased c-Fos expression in the posterior parietal cortex may be related to impaired multisensory integrations in Caps2-KO mice.

8.
Sci Rep ; 11(1): 9749, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980877

RESUMO

Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-ß protein (Aß) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aß levels and suppression of inflammation.


Assuntos
Doença de Alzheimer/dietoterapia , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , Gorduras Insaturadas na Dieta/uso terapêutico , Ácidos Linoleicos Conjugados/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Citocinas/análise , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 11(1): 8656, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883618

RESUMO

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Condicionamento Clássico , Aprendizagem por Discriminação , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Frações Subcelulares/metabolismo
10.
J Neurosci ; 41(20): 4524-4535, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33846232

RESUMO

Ca2+-dependent activator protein for secretion 2 (CAPS2) regulates dense-core vesicle (DCV) exocytosis to facilitate peptidergic and catecholaminergic transmitter release. CAPS2 deficiency in mice has mild neuronal effects but markedly impairs social behavior. Rare de novo Caps2 alterations also occur in autism spectrum disorder, although whether CAPS2-mediated release influences social behavior remains unclear. Here, we demonstrate that CAPS2 is associated with DCV exocytosis-mediated release of the social interaction modulatory peptide oxytocin (OXT). CAPS2 is expressed in hypothalamic OXT neurons and localizes to OXT nerve projection and OXT release sites, such as the pituitary. Caps2 KO mice exhibited reduced plasma albeit increased hypothalamic and pituitary OXT levels, indicating insufficient release. OXT neuron-specific Caps2 conditional KO supported CAPS2 function in pituitary OXT release, also affording impaired social interaction and recognition behavior that could be ameliorated by exogenous OXT administered intranasally. Thus, CAPS2 appears critical for OXT release, thereby being associated with social behavior.SIGNIFICANCE STATEMENT The role of the neuropeptide oxytocin in enhancing social interaction and social bonding behavior has attracted considerable public and neuroscientific attention. A central issue in oxytocin biology concerns how oxytocin release is regulated. Our study provides an important insight into the understanding of oxytocin-dependent social behavior from the perspective of the CAPS2-regulated release mechanism.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ocitocina/metabolismo , Comportamento Social , Animais , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Vesículas Secretórias/metabolismo
11.
Mol Brain ; 14(1): 52, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712038

RESUMO

The HapMap Project is a major international research effort to construct a resource to facilitate the discovery of relationships between human genetic variations and health and disease. The Ser19Stop single nucleotide polymorphism (SNP) of human phytanoyl-CoA hydroxylase-interacting protein-like (PHYHIPL) gene was detected in HapMap project and registered in the dbSNP. PHYHIPL gene expression is altered in global ischemia and glioblastoma multiforme. However, the function of PHYHIPL is unknown. We generated PHYHIPL Ser19Stop knock-in mice and found that PHYHIPL impacts the morphology of cerebellar Purkinje cells (PCs), the innervation of climbing fibers to PCs, the inhibitory inputs to PCs from molecular layer interneurons, and motor learning ability. Thus, the Ser19Stop SNP of the PHYHIPL gene may be associated with cerebellum-related diseases.


Assuntos
Cerebelo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polimorfismo de Nucleotídeo Único , Células de Purkinje/ultraestrutura , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Forma Celular , Códon de Terminação , Feminino , Técnicas de Introdução de Genes , Projeto HapMap , Humanos , Interneurônios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Fibras Nervosas/fisiologia , Células de Purkinje/metabolismo , Teste de Desempenho do Rota-Rod , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Front Cell Neurosci ; 14: 595607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362469

RESUMO

Mouse line BTBR T+ Iptr3 tf /J (hereafter referred as to BTBR/J) is a mouse strain that shows lower sociability compared to the C57BL/6J mouse strain (B6) and thus is often utilized as a model for autism spectrum disorder (ASD). In this study, we utilized another subline, BTBRTF/ArtRbrc (hereafter referred as to BTBR/R), and analyzed the associated brain transcriptome compared to B6 mice using microarray analysis, quantitative RT-PCR analysis, various bioinformatics analyses, and in situ hybridization. We focused on the cerebral cortex and the striatum, both of which are thought to be brain circuits associated with ASD symptoms. The transcriptome profiling identified 1,280 differentially expressed genes (DEGs; 974 downregulated and 306 upregulated genes, including 498 non-coding RNAs [ncRNAs]) in BTBR/R mice compared to B6 mice. Among these DEGs, 53 genes were consistent with ASD-related genes already established. Gene Ontology (GO) enrichment analysis highlighted 78 annotations (GO terms) including DNA/chromatin regulation, transcriptional/translational regulation, intercellular signaling, metabolism, immune signaling, and neurotransmitter/synaptic transmission-related terms. RNA interaction analysis revealed novel RNA-RNA networks, including 227 ASD-related genes. Weighted correlation network analysis highlighted 10 enriched modules including DNA/chromatin regulation, neurotransmitter/synaptic transmission, and transcriptional/translational regulation. Finally, the behavioral analyses showed that, compared to B6 mice, BTBR/R mice have mild but significant deficits in social novelty recognition and repetitive behavior. In addition, the BTBR/R data were comprehensively compared with those reported in the previous studies of human subjects with ASD as well as ASD animal models, including BTBR/J mice. Our results allow us to propose potentially important genes, ncRNAs, and RNA interactions. Analysis of the altered brain transcriptome data of the BTBR/R and BTBR/J sublines can contribute to the understanding of the genetic underpinnings of autism susceptibility.

13.
Cell Tissue Res ; 382(1): 125-134, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897423

RESUMO

Brain-derived neurotrophic factor (BDNF) is known to control a wide variety of brain functions, ranging from memory formation to food intake. However, since the BDNF levels are extremely low in the nervous system, the dynamics in neurons from intracellular trafficking to secretion is absolutely complicated; the understanding is not fully promoted. We here review the findings of those critical mechanisms from intracellular trafficking to the secretion of BDNF. Furthermore, to solve this issue, technological advances for the detection, measurement, and imaging of this growth factor are essential. We believe that this review helps the study of these complex but critical mechanisms of BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Transporte Proteico/genética , Humanos , Transmissão Sináptica
14.
Neurosci Lett ; 738: 135335, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891671

RESUMO

Proopiomelanocortin (POMC) is a neuropeptide precursor produced in the anterior and intermediate pituitary lobes, the hypothalamic arcuate nucleus (ARC), and solitary tract nucleus. Alpha-melanocyte-stimulating hormone (α-MSH) is a cell type specific POMC derivative that is essential for regulating feeding, and energy homeostasis. However, the molecular mechanism underlying POMC/α-MSH secretion remains unclear. Ca2+-dependent activator protein for secretion 2 (CAPS2) is a regulatory protein involved in the exocytosis of dense-core vesicles containing neuropeptides. We previously reported CAPS2 localization in the intermediate pituitary lobe and reduced body weights in Caps2-knockout (Caps2-KO) mice, compared to control mice. Here, we aimed to investigate CAPS2 expression in POMC-expressing neurons and the effects of CAPS2 deficiency on the secretion of POMC-related peptides and feeding behavior phenotype. CAPS2 was localized in the POMC-expressing neurons of the intermediate pituitary lobe, hypothalamic ARC, and the paraventricular nucleus, which is innervated by hypothalamic neurons. POMC protein levels in the intermediate pituitary lobe of Caps2-KO mice were significantly higher than that in the control mice, suggesting a possible accumulation of POMC-derived peptides in the intermediate pituitary lobe of Caps2-KO mice. Moreover, administration of low-dose melanotan-2, an α-MSH receptor (MC4R) agonist, decreased food intake per body weight in Caps2-KO mice; no such effect was observed in the wildtype mice. Collectively, these results suggest that CAPS2 is involved in regulating the secretion of POMC-derived peptides, including α-MSH, is partially associated with feeding, and affects energy metabolism.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Ingestão de Alimentos/genética , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/genética , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Peptídeos Cíclicos/farmacologia , Hipófise/efeitos dos fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
15.
Mol Brain ; 13(1): 107, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723372

RESUMO

The insular cortex (IC) is the primary gustatory cortex, and it is a critical structure for encoding and retrieving the conditioned taste aversion (CTA) memory. In the CTA, consumption of an appetitive tastant is associated with aversive experience such as visceral malaise, which results in avoidance of consuming a learned tastant. Previously, we showed that levels of the cyclic-AMP-response-element-binding protein (CREB) determine the insular cortical neurons that proceed to encode a conditioned taste memory. In the amygdala and hippocampus, it is shown that CREB and neuronal activity regulate memory allocation and the neuronal mechanism that determines the specific neurons in a neural network that will store a given memory. However, cellular mechanism of memory allocation in the insular cortex is not fully understood. In the current study, we manipulated the neuronal activity in a subset of insular cortical and/or basolateral amygdala (BLA) neurons in mice, at the time of learning; for this purpose, we used an hM3Dq designer receptor exclusively activated by a designer drug system (DREADD). Subsequently, we examined whether the neuronal population whose activity is increased during learning, is reactivated by memory retrieval, using the expression of immediate early gene c-fos. When an hM3Dq receptor was activated only in a subset of IC neurons, c-fos expression following memory retrieval was not significantly observed in hM3Dq-positive neurons. Interestingly, the probability of c-fos expression in hM3Dq-positive IC neurons after retrieval was significantly increased when the IC and BLA were co-activated during conditioning. Our findings suggest that functional interactions between the IC and BLA regulates CTA memory allocation in the insular cortex, which shed light on understanding the mechanism of memory allocation regulated by interaction between relevant brain areas.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Rememoração Mental/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Rede Nervosa
16.
Sci Rep ; 10(1): 8613, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451463

RESUMO

Animals can remember a situation associated with an aversive event. Contextual fear memory is initially encoded and consolidated in the hippocampus and gradually consolidated in multiple brain regions over time, including the medial prefrontal cortex (PFC). However, it is not fully understood how PFC neurons contribute to contextual fear memory formation during learning. In the present study, neuronal activity was increased in PFC neurons utilizing the pharmacogenetic hM3Dq-system in male mice. We show that fear expression and memory formation are enhanced by increasing neuronal activity in PFC during conditioning phase. Previous studies showed that the activation of hM3Dq receptor in a subset of amygdala neurons enhanced fear memory formation and biased which neurons are allocated to a memory trace, in which immediate early gene c-fos was preferentially expressed following memory retrieval in these pre-activated neurons. In this study, hM3Dq activation in PFC could not change the probability of c-fos expression in pre-activated neurons flowing memory retrieval. Instead, the number c-fos positive neurons following memory retrieval was significantly increased in the basolateral amygdala. Our results suggest that neuronal activity in PFC at the time of learning modulates fear memory formation and downstream cellular activity at an early phase.


Assuntos
Medo , Memória , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Condicionamento Clássico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo
17.
Gene Expr Patterns ; 34: 119070, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521773

RESUMO

Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica/métodos , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcriptoma/genética
18.
Sci Rep ; 9(1): 7552, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101876

RESUMO

Body ownership is a fundamental aspect of self-consciousness. Illusion of body ownership is caused by updating body representation through multisensory integration. Synchronous visuotactile stimulation of a hand and rubber hand leads to illusory changes in body ownership in humans, but this is impaired in individuals with autism spectrum disorder (ASD). We previously reported that mice also exhibit body ownership illusion. With synchronous stroking of a tail and rubber tail, mice responded as if their own tails were being touched when the rubber tails were grasped ('rubber tail illusion'). However, it remains unknown whether deficits in illusion of body ownership occur in mouse models of autism. Here, we examined whether the 'rubber tail illusion' occurred in Ca2+-dependent activator protein for secretion 2-knockout (Caps2-KO) mice, which exhibit autistic-like phenotypes. During the synchronous stroking, response rates were significantly lower in Caps2-KO mice than in wild-type mice. There were no significant differences between the response rates of wild-type and Caps2-KO mice during the asynchronous stroking. The 'rubber tail illusion' was weak in Caps2-KO mice, suggesting that Caps2-KO mice experienced weaker visuotactile integration during the task. The rubber tail task will be a useful tool in mouse models of autism to evaluate atypical sensory processing.


Assuntos
Imagem Corporal/psicologia , Proteínas de Ligação ao Cálcio/genética , Retroalimentação Sensorial/fisiologia , Ilusões/psicologia , Proteínas do Tecido Nervoso/genética , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Cognição/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Propriocepção/fisiologia , Percepção Visual/fisiologia
19.
Mol Brain ; 12(1): 2, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621738

RESUMO

Previous gain-of-function studies using an optogenetic technique showed that manipulation of the hippocampal dentate gyrus or CA1 cell ensembles is important for memory reactivation and to generate synthetic or false memory. However, gain-of-function study manipulating CA3 cell ensembles has not been reported. The CA3 area of the hippocampus comprises a recurrent excitatory circuit, which is thought to be important for the generation of associations among the stored information within one brain region. We investigated whether the coincident firing of cell ensembles in one brain region, hippocampal CA3, associates distinct events. CA3 cell ensembles responding to context exploration and during contextual fear conditioning were labeled with channelrhodopsin-2 (ChR2)-mCherry. The synchronous activation of these ensembles induced freezing behavior in mice in a neutral context, in which a foot shock had never been delivered. The recall of this artificial associative fear memory was context specific. In vivo electrophysiological recordings showed that 20-Hz optical stimulation of ChR2-mCherry-expressing CA3 neurons, which is the same stimulation protocol used in behavioral experiment, induced long-term potentiation at CA3-CA3 synapses. Altogether, these results demonstrate that the synchronous activation of ensembles in one brain region, CA3 of the hippocampus, is sufficient for the association of distinct events. The results of our electrophysiology potentially suggest that this artificial association of memory events might be induced by the strengthening of synaptic efficacy between CA3 ensembles via recurrent circuit.


Assuntos
Região CA3 Hipocampal/citologia , Memória/fisiologia , Optogenética/métodos , Animais , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
20.
Biochem Biophys Res Commun ; 509(2): 429-434, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30594389

RESUMO

Appropriate synapse formation during development is necessary for normal brain function, and synapse impairment is often associated with brain dysfunction. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are key factors in regulating synaptic development. We previously reported that BDNF/NT-3 secretion was enhanced by calcium-dependent activator protein for secretion 2 (CADPS2). Although BDNF/NT-3 and CADPS2 are co-expressed in various brain regions, the effect of Cadps2-deficiency on brain region-specific BDNF/NT-3 levels and synaptic development remains elusive. Here, we show developmental changes of BDNF/NT-3 levels and we assess disruption of excitatory/inhibitory synapses in multiple brain regions (cerebellum, hypothalamus, striatum, hippocampus, parietal cortex and prefrontal cortex) of Cadps2 knockout (KO) mice compared with wild-type (WT) mice. Compared with WT, BDNF levels in KO mice were reduced in young/adult hippocampus, but increased in young hypothalamus, while NT-3 levels were reduced in adult cerebellum and young hippocampus, but increased in adult parietal cortex. Immunofluorescence of vGluT1, an excitatory synapse marker, and vGAT, an inhibitory synapse marker, in adult KO showed that vGluT1 was higher in the cerebellum and parietal cortex but lower in the hippocampus, whereas vGAT was lower in the hippocampus and parietal cortex compared with WT. Immunolabeling for both vGluT1 and vGAT was increased in the parietal cortex but vGAT was decreased in the cerebellum in adult KO compared with WT. These data suggest that CADPS2-mediated secretion of BDNF/NT-3 may be involved in development and maturation of synapses and in the balance between inhibitory and excitatory synapses.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurotrofina 3/genética , Sinapses/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Neurônios/citologia , Neurotrofina 3/metabolismo , Especificidade de Órgãos , Lobo Parietal/citologia , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Sinapses/classificação , Sinapses/metabolismo , Transmissão Sináptica/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...