RESUMO
The potential health benefits of probiotic bacteria have led to the isolation of new microbial strains for incorporation into food products. However, newly isolated candidate probiotic organisms do not automatically share the "generally recognized as safe" (GRAS) status of traditional lactic acid bacteria (LAB). Before their introduction into food products, the safety of new isolates has to be evaluated. The objective of this study was to characterize LAB isolates from the stool of a newborn infant, and evaluate their safety and probiotic potential, in vitro. Thirty colonies were identified as Lactobacillus gasseri through sequencing of 16S rDNA. Pulsed Field Gel Electrophoresis using restriction enzymes SmaI and Apa I revealed that 29 of the L. gasseri were nearly identical, however one isolate exhibited a distinctive DNA fingerprint. All 30 L. gasseri were evaluated for resistance to antibiotics, bile tolerance, hemolytic activity and antagonism toward selected pathogens. All 30 strains harbored three plasmids, with one strain that showed strong tolerance to 0.5% of bile and harbored a unique fourth plasmid encoding a putative multidrug resistance transporter protein (LmrB). No hemolytic activity or antagonism, beyond acid inhibition was observed. Three selected strains UFVCC1083, 1091 and 1112 showed strong resistance to simulated small intestinal and gastric juices and adhered in vitro to mucin and two intestinal epithelial cell lines, Caco-2 and HT-29. This study identified and characterized recently isolated L. gasseri strains from faeces of a breast fed infant as potential probiotic candidates for use in the human milk banks in Brazil.