Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 105(5-1): 054119, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706239

RESUMO

An open quantum system in contact with an infinite bath approaches equilibrium, while the state of the bath remains unchanged. If the bath is finite, the open system still relaxes to equilibrium but it induces a dynamical evolution of the bath state. In this paper, we study the dynamics of open quantum systems in contact with finite baths. We obtain a hierarchy of master equations that improve their accuracy by including more dynamical information of the bath. For instance, as the least accurate but simplest description in the hierarchy, we obtain the conventional Born-Markov-secular master equation. Remarkably, our framework works even if the measurements of the bath energy are imperfect, which not only is more realistic but also unifies the theoretical description. Also, we discuss this formalism in detail for a particular noninteracting environment where the Boltzmann temperature and the Kubo-Martin-Schwinger relation naturally arise. Finally, we apply our hierarchy of master equations to study the central spin model.

2.
Phys Rev E ; 99(3-1): 032126, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999406

RESUMO

Heat rectifiers are systems that conduct heat asymmetrically for forward and reversed temperature gradients. We present an analytical study of heat rectification in linear quantum systems. We demonstrate that asymmetric heat currents can be induced in a linear system only if it is dynamically driven. This asymmetry emerges when the driving frequency favors the nonsymmetric heat exchange processes at the expense of the symmetric ones. Finally, we demonstrate the feasibility of such driven harmonic network to work as a thermal transistor, quantifying its efficiency through the dynamical amplification factor.

3.
Rep Prog Phys ; 81(7): 074002, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671752

RESUMO

Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.

4.
Phys Rev Lett ; 114(22): 220405, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26196607

RESUMO

The unknown temperature of a sample can be estimated with minimal disturbance by putting it in thermal contact with an individual quantum probe. If the interaction time is sufficiently long so that the probe thermalizes, the temperature can be read-out directly from its steady state. Here we prove that the optimal quantum probe, acting as a thermometer with maximal thermal sensitivity, is an effective two-level atom with a maximally degenerate excited state. When the total interaction time is insufficient to produce full thermalization, we optimize the estimation protocol by breaking it down into sequential stages of probe preparation, thermal contact, and measurement. We observe that frequently interrogated probes initialized in the ground state achieve the best performance. For both fully and partly thermalized thermometers, the sensitivity grows significantly with the number of levels, though optimization over their energy spectrum remains always crucial.

5.
Phys Rev Lett ; 101(18): 187202, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999858

RESUMO

We study frustrated quantum systems from a quantum information perspective. Within this approach, we find that highly frustrated systems do not follow any general "area law" of block entanglement, while weakly frustrated ones have area laws similar to those of nonfrustrated systems away from criticality. To calculate the block entanglement in systems with degenerate ground states, typical in frustrated systems, we define a "cooling" procedure of the ground state manifold and propose a frustration degree and a method to quantify constructive and destructive interference effects of entanglement.

6.
Phys Rev Lett ; 100(11): 110505, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517771

RESUMO

We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.

7.
Science ; 319(5861): 292-3, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18202282
8.
Phys Rev Lett ; 98(2): 023003, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358603

RESUMO

We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced long range interactions. Such models permit one to store information distributed over the whole system. The storage capacity of such a network, which depends on the phonon spectrum of the system, can be controlled by changing the external trapping potential. We analyze the implementation of error resistant universal quantum information processing in such systems.

9.
Phys Rev Lett ; 93(14): 143902, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524792

RESUMO

We address the dynamics of higher-order solitons in optical lattices, and predict their self-splitting into the set of their single-soliton constituents. The splitting is induced by the potential introduced by the lattice, together with the imprinting of a phase tilt onto the initial multisoliton states. The phenomenon allows the controllable generation of several coherent solitons linked via their Zakharov-Shabat eigenvalues. Application of the scheme to the generation of correlated matter waves in Bose-Einstein condensates is discussed.

10.
Phys Rev Lett ; 92(8): 087902, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14995816

RESUMO

We present the experimental detection of genuine multipartite entanglement using entanglement witness operators. To this aim, we introduce a canonical way of constructing and decomposing witness operators so that they can be directly implemented with present technology. We apply this method to three- and four-qubit entangled states of polarized photons, giving experimental evidence that the considered states contain true multipartite entanglement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA