Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Indian J Tuberc ; 70(1): 49-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36740318

RESUMO

BACKGROUND: Dry powder inhaler is a popular approach to pulmonary drug delivery to treat tuberculosis. Spray dried Nanoparticles using lactose carrier is extensively used for pulmonary drug delivery. Though lactose nanoparticles show deep lung deposition, they fail to uniformly disperse nanoparticles in its original form in alveoli. Rifampicin is one of the first line drugs in tuberculosis treatment. Lung targeted drug delivery system is an approach to reduce dose related side effects of rifampicin. Inhalable nanoparticles also help to target alveolar macrophages, thus improving treatment efficiency. METHODOLOGY: This study focuses on rifampicin nanosuspension formulation and optimization using nano-precipitation method followed by characterizing effervescent DPI of rifampicin nanoparticles with effervescent pair (citric acid and sodium bicarbonate). Preliminary studies showed suitability of 4:5 solvent: antisolvent ratio and lecithin (1%) as stabilizer. The drug and stabilizer concentration in nanoparticles was successfully optimized using 3 ∗ 2 factorial design using DESIGN EXPERT software. The rifampicin nanoparticles were further converted to spray dried powder using effervescent carrier. RESULT: The effervescent pair formulation was monodisperse and had a particle size of 1.5 microns (polydispersity index 0.289), thus showing better redispersibility than lactose nanoparticles. The mass median aerodynamic diameter and fine particle diameter of both spray dried formulations were similar and suitable for deep lung deposition. CONCLUSION: These findings are suggestive that effervescent technique can be successfully employed to improve redispersibility of rifampicin nanoparticles.


Assuntos
Nanopartículas , Rifampina , Humanos , Pós , Aerossóis , Lactose
2.
Artigo em Inglês | MEDLINE | ID: mdl-35118372

RESUMO

Curcumin is a well-recognized antioxidant phytoactive isolated from the rhizomes of Curcuma longa. Numerous landmark investigations have proved the antioxidant and hepatoprotective potential of curcumin. The aim of present study was to target curcumin loaded nanocarriers to hepatocytes using asialoglycoprotein receptors targeting strategy. Mannose, a water-soluble carbohydrate, was hydrophobized by anchoring stearylamine with an objective to conjugate mannose on the surface of curcumin loaded nanostructured lipid carriers for targeting asialoglycoprotein receptors on hepatocytes. Mannose conjugated stearylamine was synthesized and characterized using various analytical techniques. The synthesized targeting ligand was incorporated curcumin loaded nanostructured lipid carriers and characterized by photon correlation spectroscopy. Zeta potential measurement was used to confirm the conjugation of the synthesized ligand to the surface of drug-loaded nanostructured lipid carriers. CCl4 induced hepatotoxicity in male Wistar rats was used as an experimental animal model to evaluate the hepatoprotective potential of formulated drug encapsulated nanostructured lipid carriers. The hepatoprotective potential was assessed by measuring serum liver injury markers and oxidative stress parameters in the liver post-mitochondrial supernatant. Mannose conjugated nanostructured lipid carriers showed acceptable particle size which revealed its suitability for hepatocyte targeting. In addition to this, mannose conjugated nanocarriers revealed significantly better (p â€‹< â€‹0.05) reduction of serum liver injury markers and proinflammatory cytokines compared to the unconjugated one which confirmed hepatocytes targeting potential of the synthesized ligand. Asialoglycoprotein receptors targeting could be a landmark strategy for hepatocyte targeting. Thus, the synthesized mannose anchored stearylamine could be a promising novel targeting ligand having hepatocyte targeting potential.

3.
J Liposome Res ; 32(3): 211-223, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34727833

RESUMO

Plant-derived phytoconstituents are well known for their therapeutic potential. It has been experimentally demonstrated that whole-plant extract or isolated phytoconstituents reveal various therapeutic potentials like hepatoprotective, antimicrobial, neuroprotective, antitumor, antioxidant, skin protectives, etc. Although these phytoconstituents have potential therapeutic benefits, their use is limited due to their poor bioavailability, stability in biological fluids, and authentication issues. These continue to be an open problem that affects the application of these valuable ancient herbal herbs in the effective treatment and management of various disease conditions. A potential solution to these difficult problems could be the loading of phytoactives in phospholipid-based vesicular systems. Phospholipid-based vesicles like liposomes, phytosomes, ethosomes as well as transfersomes were effectively utilized recently to solve drawbacks and for effective delivery of phytoactives. Several landmark studies observed better therapeutic efficacy of phytoactive loaded vesicles compared to conventional drug delivery. Thus phospholipid-based vesicles mediated phytoactive delivery is a recently developed promising and attractive strategy for better therapeutic control on disease conditions. The present short review highlights recent advances in herbal bioactive loaded phospholipid-based vesicles.


Assuntos
Lipossomos , Fosfolipídeos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Lipossomos/farmacologia , Fosfolipídeos/metabolismo , Extratos Vegetais/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA