Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 157: 213754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211507

RESUMO

Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.


Assuntos
Hevea , Borracha , Animais , Camundongos , Látex , Hevea/química , Cicatrização , Colágeno , Citocinas
2.
Biomater Adv ; 157: 213739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154400

RESUMO

Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.


Assuntos
Hipersensibilidade ao Látex , Látex , Animais , Humanos , Alérgenos , Proteínas , Materiais Biocompatíveis
3.
Int J Biol Macromol ; 249: 126016, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37516224

RESUMO

Films and coatings manufactured with bio-based renewable materials, such as biopolymers and essential oils, could be a sustainable and eco-friendly alternative for protecting and preserving agricultural products. In this work, we developed films and coatings from pectin and chitosan to protect strawberries (Fragaria x ananassa Duch.) from spoilage and microbial contamination. We developed three coatings containing equal amounts of glycerol and Sicilian lemon essential oil (LEO) nanoemulsion. We identified seventeen chemicals from LEO by GC-MS chromatogram, including d-limonene, α-Pinene, ß-Pinene, and γ-Terpinene. The pectin and chitosan coatings were further characterized using different physicochemical, mechanical, and biological methods. The films demonstrated satisfactory results in strength and elongation at the perforation as fruit packaging. In addition, the coatings did not influence the weight and firmness of the strawberry pulps. We observed that 100 % essential oil was released in 1440 min resulting from the erosion process. Also, the oil preserved the chemical stability of the films. Antioxidant activity (AA), measured by Electron Paramagnetic Resonance (EPR), showed that the coatings loaded with 2 % LEO nanoemulsion (PC + oil) showed that almost 50 % of AA from LEO nanoemulsion was preserved. The chitosan and the pectin-chitosan coatings (PC + oil) inhibited filamentous fungi and yeast contaminations in strawberries for at least 14 days, showing a relationship between the AA and antimicrobial results.


Assuntos
Quitosana , Fragaria , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Fragaria/microbiologia , Quitosana/química , Pectinas/farmacologia , Pectinas/química , Antioxidantes/farmacologia , Antioxidantes/química , Conservação de Alimentos/métodos
4.
Int J Biol Macromol ; 211: 568-579, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35533848

RESUMO

Gold nanoparticles (AuNPs) have shown interesting properties and specific biofunctions, providing benefits and new opportunities for controlled release systems. In this research, we demonstrated the use of natural rubber latex (NRL) from Hevea brasiliensis as a carrier of AuNPs and the antibiotic metronidazole (MET). We prepared AuNP-MET-NRL and characterized by physicochemical, biological and in vitro release assays. The effect of AuNPs on MET release was evaluated using UV-Vis and Laser-Induced Breakdown Spectroscopy (LIBS) techniques. AuNPs synthesized by Turkevich and Frens method resulted in a spherical shape with diameters of 34.8 ± 5.5 nm. We verified that there was no emergence or disappearance of new vibrational bands. Qualitatively and quantitatively, we showed that the MET crystals dispersed throughout the NRL. The Young's modulus and elongation values at dressing rupture were in the range appropriate for human skin application. 64.70% of the AuNP-MET complex was released within 100 h, exhibiting a second-order exponential release profile. The LIBS technique allowed monitoring of the AuNP release, indicating the Au emission peak reduction at 267.57 nm over time. Moreover, the dressing displayed an excellent hemocompatibility and fibroblast cell viability. These results demonstrated that the AuNP-MET-NRL wound dressing is a promising approach for dermal applications.


Assuntos
Ouro , Látex , Nanopartículas Metálicas , Metronidazol , Bandagens , Ouro/química , Humanos , Látex/química , Nanopartículas Metálicas/química , Metronidazol/farmacologia , Borracha/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...