Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(50): 4735-4743, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33283513

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential ingredients of the human diet. They are synthesized by LC-PUFA synthases (PFASs) expressed in marine bacteria and other organisms. PFASs are large enzyme complexes that are homologous to mammalian fatty acid synthases and microbial polyketide synthases. One subunit of each PFAS harbors consecutive ketosynthase (KSc) and chain length factor (CLF) domains that collectively catalyze the elongation of a nascent fatty acyl chain via iterative carbon-carbon bond formation. We report the X-ray crystal structure of the KS-CLF didomain from a well-studied PFAS in Moritella marina. Our structure, in combination with biochemical analysis, provides a foundation for understanding the mechanism of substrate recognition and chain length control by the KS-CLF didomain as well as its interaction with a cognate acyl carrier protein partner.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos Insaturados/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Domínio Catalítico/genética , Cristalografia por Raios X , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos Insaturados/química , Humanos , Espectrometria de Massas , Modelos Moleculares , Moritella/enzimologia , Moritella/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
2.
Protein Eng Des Sel ; 32(1): 25-32, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251342

RESUMO

Some bacteria belonging to the actinobacteria and proteobacteria groups can accumulate neutral lipids expressing enzymes of the wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase (WS/DGAT) family. tDGAT is a WS/DGAT-like enzyme from Thermomonospora curvata able to produce TAGs and WEs when heterologously expressed in Escherichia coli. In this study, a protocol for the directed evolution of bacterial lipid-producing enzymes based on fluorimetry is developed and tested. tDGAT has been successfully evolved towards the improvement of TAG production with an up to 2.5 times increase in TAG accumulation. Mutants with no ability to produce TAGs but able to accumulate waxes were also selected during the screening. The localization of the mutations that enhance TAG production in the outer surface of tDGAT points out possible new mechanisms that contribute to the activity of this family of enzymes. This Nile red-based high throughput screening provides an evolution platform for other WS/DGAT-like enzymes.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Diacilglicerol O-Aciltransferase/química , Evolução Molecular Direcionada , Actinobacteria/genética , Proteínas de Bactérias/genética , Diacilglicerol O-Aciltransferase/genética , Thermomonospora
3.
J Biol Chem ; 293(32): 12491-12501, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29921583

RESUMO

Omega-3 polyunsaturated fatty acids (PUFA) are produced in some unicellular organisms, such as marine gammaproteobacteria, myxobacteria, and thraustochytrids, by large enzyme complexes called PUFA synthases. These enzymatic complexes resemble bacterial antibiotic-producing proteins known as polyketide synthases (PKS). One of the PUFA synthase subunits is a conserved large protein (PfaA in marine proteobacteria) that contains three to nine tandem acyl carrier protein (ACP) domains as well as condensation and modification domains. In this work, a study of the PfaA architecture and its ability to initiate the synthesis by selecting malonyl units has been carried out. As a result, we have observed a self-acylation ability in tandem ACPs whose biochemical mechanism differ from the previously described for type II PKS. The acyltransferase domain of PfaA showed a high selectivity for malonyl-CoA that efficiently loads onto the ACPs domains. These results, together with the structural organization predicted for PfaA, suggest that this protein plays a key role at early stages of the anaerobic pathway of PUFA synthesis.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Flavobacteriaceae/metabolismo , Malonil Coenzima A/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Ácido Graxo Sintases/química , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
4.
PLoS One ; 12(4): e0176520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448543

RESUMO

Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3-fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura , Triglicerídeos/metabolismo , Biocombustíveis/microbiologia , Diacilglicerol O-Aciltransferase/química , Expressão Gênica , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...