Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 87(21): 14319-14333, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36285612

RESUMO

Tetra-ortho-fluoro-azobenzenes are a class of photoswitches useful for the construction of visible-light-controlled molecular systems. They can be used to achieve spatio-temporal control over the properties of a chosen bioactive molecule. However, the introduction of different substituents to the tetra-fluoro-azobenzene core can significantly affect the photochemical properties of the switch and compromise biocompatibility. Herein, we explored the effect of useful substituents, such as functionalization points, attachment handles, and water-solubilizing groups, on the photochemical properties of this photochromic system. In general, all the tested fluorinated azobenzenes exhibited favorable photochemical properties, such as high photostationary state distribution and long half-lives, both in organic solvents and in water. One of the azobenzene building blocks was functionalized with a trehalose group to enable the uptake of the photoswitch into mycobacteria. Following metabolic uptake and incorporation of the trehalose-based azobenzene in the mycobacterial cell wall, we demonstrated photoswitching of the azobenzene in the isolated total lipid extract.


Assuntos
Processos Fotoquímicos , Trealose , Compostos Azo/química , Água , Biologia
2.
iScience ; 24(7): 102771, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34286233

RESUMO

The spontaneous insertion of helical transmembrane (TM) polypeptides into lipid bilayers is driven by three sequential equilibria: solution-to-membrane interface (MI) partition, unstructured-to-helical folding, and MI-to-TM helix insertion. A bottleneck for understanding these three steps is the lack of experimental approaches to perturb membrane-bound hydrophobic polypeptides out of equilibrium rapidly and reversibly. Here, we report on a 24-residues-long hydrophobic α-helical polypeptide, covalently coupled to an azobenzene photoswitch (KCALP-azo), which displays a light-controllable TM/MI equilibrium in hydrated lipid bilayers. FTIR spectroscopy reveals that trans KCALP-azo folds as a TM α-helix (TM topology). After trans-to-cis photoisomerization of the azobenzene moiety with UV light (reversed with blue light), the helical structure of KCALP-azo is maintained, but its helix tilt increased from 32 ± 5° to 79 ± 8°, indication of a reversible TM-to-MI transition. Further analysis indicates that this transition is incomplete, with cis KCALP-azo existing in a ∼90% TM and ∼10% MI mixture.

3.
Chem Sci ; 12(8): 2916-2924, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34164058

RESUMO

Many studies have recently explored a new class of reversible photoswitching compounds named Donor-Acceptor Stenhouse Adducts (DASAs). Upon light irradiation, these systems evolve from a coloured open-chain to a colourless closed-ring form, while the thermal back-reaction occurs at room temperature. In order to fulfill the requirements for different applications, new molecules with specific properties need to be designed. For instance, shifting the activation wavelength towards the red part of the visible spectrum is of relevance to biological applications. By using accurate computational calculations, we have designed new DASAs and predicted some of their photophysical properties. Starting from well-studied donor and acceptor parts, we have shown that small chemical modifications can lead to substantial changes in both photophysical and photoswitching properties of the resulting DASAs. Furthermore, we have also analysed how these substitutions impact the electronic structure of the systems. Finally, some pertinent candidates have been successfully synthesized and their photoswitching properties have been characterized experimentally.

4.
Chemistry ; 27(13): 4420-4429, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258498

RESUMO

Donor-acceptor Stenhouse adducts (DASAs) are playing an outstanding role as innovative and versatile photoswitches. Until now, all the efforts have been spent on modifying the donor and acceptor moieties to modulate the absorption energy and improve the cyclization and reversion kinetics. However, there is a strong dependence on specific structural modifications and a lack of predictive behavior, mostly owing to the complex photoswitching mechanism. Here, by means of a combined experimental and theoretical study, the effect of chemical modification of the π-bridge linking the donor and acceptor moieties is systematically explored, revealing the significant impact on the absorption, photocyclization, and relative stability of the open form. In particular, a position along the π-bridge is found to be the most suited to redshift the absorption while preserving the cyclization. However, thermal back-reaction to the initial isomer is blocked. These effects are explained in terms of an increased acceptor capability offered by the π-bridge substituent that can be modulated. This strategy opens the path toward derivatives with infra-red absorption and a potential anchoring point for further functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...