Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(2): 869-881, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34957831

RESUMO

X-ray spectroscopy using high-energy-resolution fluorescence detection (HERFD) has critically increased the information content in X-ray spectra. We extend this technique to the tender X-ray range and present a study at the L3-edge of molybdenum. We show how information on the oxidation state, phase composition, and local environment in molybdenum-based compounds can be obtained by analyzing the HERFD L3 X-ray absorption near-edge structure (XANES). We demonstrate that the chemical shift of the L3-edge HERFD spectra follows a parabolic dependence on the oxidation state and show that a qualitative analysis of high-resolution spectra can help to estimate parameters such as distortion of a ligand environment and radial order of atoms around the absorber. In certain cases, the spectra allow disentangling the contributions from bond lengths and angles to the distortion of the ligand polyhedron. Comparison of the high-resolution spectra with theoretical simulations shows that the single-electron approximation is able to reproduce the spectral shape. The results of this work may be useful in every branch of physics, inorganic and organometallic chemistry, catalysis, materials science, biochemistry, and mineralogy where observed changes in performance or chemical properties of Mo-based compounds, accompanied by small changes in spectral shape, are to be related to the details of electronic structure and local atomic environment.

2.
J Synchrotron Radiat ; 27(Pt 3): 813-826, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381786

RESUMO

The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...