Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Immunol ; 25(1): 29-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168954

RESUMO

The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.


Assuntos
Antígenos , Linfócitos T , Animais , Humanos , Epitopos , Peptídeos , Mamíferos/metabolismo
2.
Cell Rep ; 42(12): 113529, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060380

RESUMO

Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them.


Assuntos
Autofagia Mediada por Chaperonas , Microautofagia , Autofagia , Endossomos/metabolismo , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo
3.
Oncoimmunology ; 12(1): 2222560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363104

RESUMO

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia
5.
6.
Front Immunol ; 13: 1035363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405763

RESUMO

The MHC-self immunopeptidome of professional antigen presenting cells is a cognate ligand for the TCRs expressed on both conventional and thymic-derived natural regulatory T cells. In regulatory T cells, the TCR signaling associated with MHC-peptide recognition induces antigen specific as well as bystander immunosuppression. On the other hand, TCR activation of conventional T cells is associated with protective immunity. As such the peripheral T cell repertoire is populated by a number of T cells with different phenotypes and different TCRs, which can recognize the same MHC-self-peptide complex, resulting in opposite immunological outcomes. This article summarizes what is known about regulatory and conventional T cell recognition of the MHC-self-immunopeptidome at steady state and in inflammatory conditions associated with increased T and B cell self-reactivity, discussing how changes in the MHC-ligandome including epitope copy number and post-translational modifications can tilt the balance toward the expansion of pro-inflammatory or regulatory T cells.


Assuntos
Receptores de Antígenos de Linfócitos T , Timo , Linfócitos T Reguladores , Células Apresentadoras de Antígenos , Peptídeos
7.
Sci Immunol ; 7(74): eabl3795, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984892

RESUMO

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 2 , Fígado , Isomerases de Dissulfetos de Proteínas , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epitopos , Antígenos de Histocompatibilidade Classe II , Fígado/patologia , Camundongos , Peptídeos , Isomerases de Dissulfetos de Proteínas/imunologia , Isomerases de Dissulfetos de Proteínas/metabolismo
8.
Front Immunol ; 13: 878271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651601

RESUMO

In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome in several mouse and human haplotypes has increased our understanding of the molecular components that regulate the range and selection of the MHC-II presented peptides, from MHC class II molecule polymorphisms to the recognition of different conformers, functional differences in endosomal processing along the endocytic tract, and the interplay between the MHC class II chaperones DM and DO. The sum of all these variables contributes, qualitatively and quantitatively, to the composition of the MHC II ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive to any changes in the composition of the intra- and extracellular proteome for a comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe II , Animais , Apresentação de Antígeno/fisiologia , Linfócitos T CD4-Positivos , Genes MHC da Classe II , Antígenos de Histocompatibilidade Classe II/fisiologia , Humanos , Proteoma
9.
Sci Rep ; 12(1): 5012, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322079

RESUMO

The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated the effect of CS on lung lymphatic function. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that all preceded the development of emphysema. Proteomic analysis demonstrated an increased abundance of coagulation factors in the lymph draining from the lungs of CS-exposed mice compared to control mice. In addition, in vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. These data show that CS exposure results in lung lymphatic dysfunction and a shift in thoracic lymph towards a prothrombic state. Furthermore, our data suggest that lymphatic dysfunction is due to effects of CS on the lymphatic vasculature that precede emphysema. These studies demonstrate a novel component of CS-induced lung injury that occurs early in the pathogenesis of emphysema.


Assuntos
Enfisema , Lesão Pulmonar , Enfisema Pulmonar , Fumaça , Trombose , Poluição por Fumaça de Tabaco , Animais , Enfisema/patologia , Humanos , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Enfisema Pulmonar/patologia , Fumaça/efeitos adversos , Lesão por Inalação de Fumaça , Trombose/patologia , Nicotiana/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos
11.
Nat Rev Clin Oncol ; 19(2): 114-131, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34819622

RESUMO

A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.


Assuntos
Neoplasias/radioterapia , Humanos , Transdução de Sinais
12.
Curr Opin Rheumatol ; 34(2): 133-138, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954700

RESUMO

PURPOSE OF REVIEW: The aim of this review is to give insights into how novel lymphatics functions may influence autoimmunity. RECENT FINDINGS: The lymphatic system connects peripheral tissues to draining lymph nodes to regulate adaptive immunity and directly interfaces with leukocytes in lymph vessels and in the lymph node. Here, we discuss recent findings showing evidence of dysfunctional lymphatics in autoimmune disease, new understanding of how afferent lymphatic regulation can modulate immunity, lymph node lymphatic heterogeneity and how these lymphatics can directly modulate lymphocyte function, how this understanding can be harnessed for new therapeutics, and new tools for the investigation of lymphatic and immune biology. SUMMARY: Lymphatics have an active role in the regulation of inflammation and the adaptive immune response. Here, we review recent findings in lymphatics biology in peripheral tissues and lymph nodes and emphasize the relevance for better understanding autoimmune diseases.


Assuntos
Doenças Autoimunes , Vasos Linfáticos , Autoimunidade , Humanos , Linfonodos , Sistema Linfático
13.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
14.
STAR Protoc ; 2(3): 100648, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34278334

RESUMO

A detailed quantification of antigen processing by endosomal compartments provides important information on the pattern of protein fragmentation. Here, we describe a protocol that combines gradient purified endosomes, incubated with antigens, followed by hot spot analysis of MS/MS-sequenced peptides. The analysis identifies differences in endosomal antigen processing by dendritic cells under diverse experimental conditions. For complete details on the use and execution of this protocol, please refer to Clement et al. (2021).


Assuntos
Antígenos/metabolismo , Endossomos/metabolismo , Biologia Molecular/métodos , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/imunologia , Proteínas de Membrana/administração & dosagem , Camundongos , Peptídeos/imunologia , Peptídeos/metabolismo , Espectrometria de Massas em Tandem
15.
Nat Commun ; 12(1): 4447, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290243

RESUMO

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1ß, IFN-γ, and IL-17 production, and inhibiting generation of effector CD8+ T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance.


Assuntos
Aminas Biogênicas/farmacologia , Imunomodulação/efeitos dos fármacos , Cinurenina/análogos & derivados , Animais , Aminas Biogênicas/metabolismo , Aminas Biogênicas/uso terapêutico , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Células Endoteliais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Cinurenina/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Nefrite/tratamento farmacológico , Nefrite/imunologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Triptofano/metabolismo
16.
Nat Commun ; 12(1): 3696, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140472

RESUMO

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Pele/parasitologia , Carrapatos/metabolismo , Carrapatos/microbiologia , Anaplasma phagocytophilum/patogenicidade , Animais , Artrópodes/metabolismo , Artrópodes/microbiologia , Artrópodes/fisiologia , Linhagem Celular , Dermacentor/metabolismo , Dermacentor/microbiologia , Dermacentor/fisiologia , Vesículas Extracelulares/ultraestrutura , Francisella tularensis/patogenicidade , Ontologia Genética , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/parasitologia , Microscopia Intravital , Ixodes/metabolismo , Ixodes/microbiologia , Ixodes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteômica , Proteínas R-SNARE/metabolismo , Pele/imunologia , Pele/microbiologia , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem , Proteína 2 Associada à Membrana da Vesícula/metabolismo
17.
Front Immunol ; 12: 658601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995376

RESUMO

Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.


Assuntos
Apresentação de Antígeno/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Peptídeos/imunologia , Timo/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/química , Antígenos HLA-DR/química , Antígenos HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Ligação Proteica , Baço/imunologia , Baço/metabolismo , Timo/metabolismo
18.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33891876

RESUMO

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperonas/fisiologia , Neurônios/metabolismo , Proteostase , Envelhecimento/patologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Caseína Quinase I/genética , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Neurônios/patologia , Proteoma
19.
Immunity ; 54(4): 721-736.e10, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33725478

RESUMO

Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Estresse Fisiológico/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Ligação Proteica/imunologia
20.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476307

RESUMO

Neoantigens generated by somatic nonsynonymous mutations are key targets of tumor-specific T cells, but only a small number of mutations predicted to be immunogenic are presented by MHC molecules on cancer cells. Vaccination studies in mice and patients have shown that the majority of neoepitopes that elicit T cell responses fail to induce significant antitumor activity, for incompletely understood reasons. We report that radiotherapy upregulates the expression of genes containing immunogenic mutations in a poorly immunogenic mouse model of triple-negative breast cancer. Vaccination with neoepitopes encoded by these genes elicited CD8+ and CD4+ T cells that, whereas ineffective in preventing tumor growth, improved the therapeutic efficacy of radiotherapy. Mechanistically, neoantigen-specific CD8+ T cells preferentially killed irradiated tumor cells. Neoantigen-specific CD4+ T cells were required for the therapeutic efficacy of vaccination and acted by producing Th1 cytokines, killing irradiated tumor cells, and promoting epitope spread. Such a cytotoxic activity relied on the ability of radiation to upregulate class II MHC molecules as well as the death receptors FAS/CD95 and DR5 on the surface of tumor cells. These results provide proof-of-principle evidence that radiotherapy works in concert with neoantigen vaccination to improve tumor control.


Assuntos
Antígenos de Neoplasias/farmacologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Células Th1/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/efeitos da radiação , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Radioterapia , Células Th1/patologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...