Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(6): 1284-1294.e3, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38447572

RESUMO

Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.


Assuntos
Quirópteros , Animais , Filogenia , Quirópteros/genética , Evolução Biológica , Biodiversidade , Fenótipo
2.
Anat Rec (Hoboken) ; 306(11): 2660-2669, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656052

RESUMO

This special issue of The Anatomical Record is inspired by and dedicated to Professor Kunwar P. Bhatnagar, whose lifelong interests in biology, and long career studying bats, inspired many and advanced our knowledge of the world's only flying mammals. The 15 articles included here represent a broad range of investigators, treading topics familiar to Prof. Bhatnagar, who was interested in seemingly every aspect of bat biology. Key topics include broad themes of bat development, sensory systems, and specializations related to flight and diet. These articles paint a complex picture of the fascinating adaptations of bats, such as rapid fore limb development, ear morphologies relating to echolocation, and other enhanced senses that allow bats to exploit niches in virtually every part of the world. In this introduction, we integrate and contextualize these articles within the broader story of bat ecomorphology, providing an overview of each of the key themes noted above. This special issue will serve as a springboard for future studies both in bat biology and in the broader world of mammalian comparative anatomy and ecomorphology.

3.
Nat Commun ; 14(1): 4687, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607943

RESUMO

Tooth classes are an innovation that has contributed to the evolutionary success of mammals. However, our understanding of the mechanisms by which tooth classes diversified remain limited. We use the evolutionary radiation of noctilionoid bats to show how the tooth developmental program evolved during the adaptation to new diet types. Combining morphological, developmental and mathematical modeling approaches, we demonstrate that tooth classes develop through independent developmental cascades that deviate from classical models. We show that the diversification of tooth number and size is driven by jaw growth rate modulation, explaining the rapid gain/loss of teeth in this clade. Finally, we mathematically model the successive appearance of tooth buds, supporting the hypothesis that growth acts as a key driver of the evolution of tooth number and size. Our work reveal how growth, by tinkering with reaction/diffusion processes, drives the diversification of tooth classes and other repeated structure during adaptive radiations.


Assuntos
Quirópteros , Animais , Mamíferos/genética , Aclimatação , Difusão
4.
Anat Rec (Hoboken) ; 306(11): 2842-2852, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005737

RESUMO

Bite force is a performance metric commonly used to link cranial morphology with dietary ecology, as the strength of forces produced by the feeding apparatus largely constrains the foods an individual can consume. At a macroevolutionary scale, there is evidence that evolutionary changes in the anatomical elements involved in producing bite force have contributed to dietary diversification in mammals. Much less is known about how these elements change over postnatal ontogeny. Mammalian diets drastically shift over ontogeny-from drinking mother's milk to feeding on adult foods-presumably with equally drastic changes in the morphology of the feeding apparatus and bite performance. Here, we investigate ontogenetic morphological changes in the insectivorous big brown bat (Eptesicus fuscus), which has an extreme, positive allometric increase in bite force during development. Using contrast-enhanced micro-computed tomography scans of a developmental series from birth to adult morphology, we quantified skull shape and measured skeletal and muscular parameters directly related to bite force production. We found pronounced changes in the skull over ontogeny, including a large increase in the volume of the temporalis and masseter muscles, and an expansion of the skull dome and sagittal crest that would serve to increase the temporalis attachment area. These changes indicate that development of the jaw adductors play an important role in the development of biting performance of these bats. Notably, static bite force increases with positive allometry with respect to all anatomical measures examined, suggesting that modifications in biting dynamics and/or improved motor coordination also contribute to increases in biting performance.


Assuntos
Quirópteros , Animais , Quirópteros/anatomia & histologia , Força de Mordida , Microtomografia por Raio-X , Fenômenos Biomecânicos , Crânio/diagnóstico por imagem , Crânio/anatomia & histologia
5.
Anat Rec (Hoboken) ; 306(11): 2751-2764, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36823766

RESUMO

Echolocation is the primary sense used by most bats to navigate their environment. However, the influence of echolocating behaviors upon the morphology of the auditory apparatus remains largely uninvestigated. While it is known that middle ear ossicle size scales positively with body mass across mammals, and that peak call frequency scales negatively with body mass among bats, there are still large gaps in our understanding of the degree to which allometry or ecology influences the morphology of the chiropteran auditory apparatus. To investigate this, we used µCT datasets to quantify three morphological components of the inner and middle ear: ossicle size, ossicle shape, and cochlear spirality. These data were collected across 27 phyllostomid species, spanning a broad range of body sizes, habitats, and dietary categories, and the relationships between these variables and ear morphology were assessed using a comparative phylogenetic approach. Ossicle size consistently scaled with strong negative allometry relative to body mass. Cochlear spirality was significantly (p = .025) associated with wing aspect ratio (a proxy for habitat use) but was not associated with body mass. From a morphological perspective, the malleus and incus exhibited some variation in kind with diet and call frequency, while stapes morphology is more closely tied to body size. Future work will assess these relationships within other chiropteran lineages, and investigate potential morphological differences in the middle and inner ear of echolocating-vs-non-echolocating taxa.


Assuntos
Quirópteros , Orelha Interna , Ecolocação , Animais , Filogenia , Quirópteros/anatomia & histologia , Orelha Interna/diagnóstico por imagem , Orelha Interna/anatomia & histologia , Bigorna
6.
PeerJ ; 11: e14800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718452

RESUMO

Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size (i.e., body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels.


Assuntos
Evolução Biológica , Sciuridae , Animais , Filogenia , Sciuridae/anatomia & histologia , Ecótipo , Tamanho Corporal
7.
Anat Rec (Hoboken) ; 306(11): 2830-2841, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573585

RESUMO

Dedicated nectarivory is a derived feeding habit that requires specialized cranial and soft-tissue morphologies to extract nectar from flowers. Nectarivory has evolved many times in terrestrial vertebrates, and in four bat families (Pteropodidae, Phyllostomidae, Vespertilionidae, and Mystacinidae). Within phyllostomids, specializations to nectarivory have been well documented in two subfamilies, Glossophaginae and Lonchophyllinae. However, nectarivory has also evolved independently in the genus Phyllostomus (subfamily Phyllostominae). Since Phyllostomus species have an omnivorous diet with a high consumption of nectar, they can be used to explore the basic morphological modifications linked to evolving a nectarivorous habit. Here, we focused on describing and comparing the morphological features potentially associated with nectarivory in Phyllostomus discolor. We present the first detailed tongue and palate morphological descriptions for P. discolor and perform skull morphometric analysis including 10 species. We found hair-like papillae on the tongue of P. discolor, a convergent feature with Glossophaginae and nectarivorous Pteropodids; these papillae likely confer an advantage when feeding on nectar. P. discolor does not show skull morphological features characteristic of nectarivorous bats, such as a long and narrow snout. We pose that the consumption of a variety of food, such as hard insects and fruits, and the large size of P. discolor relative to specialized nectarivores may create trade-offs against morphological specialization of the skull towards nectarivory. In contrast, a long and mobile tongue with hair-like papillae may be an evolutionary solution for nectar extraction that does not have a major impact on this species' ability to feed on other resources.


Assuntos
Quirópteros , Humanos , Animais , Quirópteros/anatomia & histologia , Néctar de Plantas , Evolução Biológica , Dieta , Crânio
8.
Proc Biol Sci ; 289(1982): 20221132, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36300520

RESUMO

Traits for prey acquisition form the phenotypic interface of predator-prey interactions. In venomous predators, morphological variation in venom delivery apparatus like fangs and stingers may be optimized for dispatching prey. Here, we determine how a single dimension of venom injection systems evolves in response to variation in the size, climatic conditions and dietary ecology of viperid snakes. We measured fang length in more than 1900 museum specimens representing 199 viper species (55% of recognized species). We find both phylogenetic signal and within-clade variation in relative fang length across vipers suggesting both general taxonomic trends and potential adaptive divergence in fang length. We recover positive evolutionary allometry and little static allometry in fang length. Proportionally longer fangs have evolved in larger species, which may facilitate venom injection in more voluminous prey. Finally, we leverage climatic and diet data to assess the global correlates of fang length. We find that models of fang length evolution are improved through the inclusion of both temperature and diet, particularly the extent to which diets are mammal-heavy diets. These findings demonstrate how adaptive variation can emerge among components of complex prey capture systems.


Assuntos
Dente , Viperidae , Animais , Filogenia , Dente/anatomia & histologia , Viperidae/anatomia & histologia , Peçonhas , Dieta , Mamíferos
9.
Science ; 378(6618): 355-356, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302008

RESUMO

The skull shapes of mammals diversified more rapidly early in their history.


Assuntos
Evolução Biológica , Mamíferos , Crânio , Animais , Mamíferos/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
10.
Evolution ; 76(12): 2959-2974, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35875871

RESUMO

The relationship between skull morphology and diet is a prime example of adaptive evolution. In mammals, the skull consists of the cranium and the mandible. Although the mandible is expected to evolve more directly in response to dietary changes, dietary regimes may have less influence on the cranium because additional sensory and brain-protection functions may impose constraints on its morphological evolution. Here, we tested this hypothesis by comparing the evolutionary patterns of cranium and mandible shape and size across 100+ species of carnivoran mammals with distinct feeding ecologies. Our results show decoupled modes of evolution in cranial and mandibular shape; cranial shape follows clade-based evolutionary shifts, whereas mandibular shape evolution is linked to broad dietary regimes. These results are consistent with previous hypotheses regarding hierarchical morphological evolution in carnivorans and greater evolutionary lability of the mandible with respect to diet. Furthermore, in hypercarnivores, the evolution of both cranial and mandibular size is associated with relative prey size. This demonstrates that dietary diversity can be loosely structured by craniomandibular size within some guilds. Our results suggest that mammal skull morphological evolution is shaped by mechanisms beyond dietary adaptation alone.


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Crânio/anatomia & histologia , Mamíferos , Mandíbula/anatomia & histologia
11.
Integr Comp Biol ; 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575617

RESUMO

The evolution of complex dentitions was a major innovation in mammals that facilitated the expansion into new dietary niches that imposed selection for tight form-function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically-advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats, (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth and mandible morphology, and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.

12.
Ecology ; 103(4): e3640, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060633

RESUMO

Data papers and open databases have revolutionized contemporary science, as they provide the long-needed incentive to collaborate in large international teams and make natural history information widely available. Nevertheless, most data papers have focused on species occurrence or abundance, whereas interactions have received much less attention. To help fill this gap, we have compiled a georeferenced data set of interactions between 93 bat species of the family Phyllostomidae (Chiroptera) and 501 plant species of 68 families. Data came from 169 studies published between 1957 and 2007 covering the entire Neotropical Region, with most records from Brazil (34.5% of all study sites), Costa Rica (16%), and Mexico (14%). Our data set includes 2571 records of frugivory (75.1% of all records) and nectarivory (24.9%). The best represented bat genera are Artibeus (28% of all records), Carollia (24%), Sturnira (10.1%), and Glossophaga (8.8%). Carollia perspicillata (187), Artibeus lituratus (125), Artibeus jamaicensis (94), Glossophaga soricina (86), and Artibeus planirostris (74) were the bat species with the broadest diets recorded based on the number of plant species. Among the plants, the best represented families were Moraceae (17%), Piperaceae (15.4%), Urticaceae (9.2%), and Solanaceae (9%). Plants of the genera Cecropia (46), Ficus (42), Piper (40), Solanum (31), and Vismia (27) exhibited the largest number of interactions. These data are stored as arrays (records, sites, and studies) organized by logical keys and rich metadata, which helped to compile the information on different ecological and geographic scales, according to how they should be used. Our data set on bat-plant interactions is by far the most extensive, both in geographic and taxonomic terms, and includes abiotic information of study sites, as well as ecological information of plants and bats. It has already facilitated several studies and we hope it will stimulate novel analyses and syntheses, in addition to pointing out important gaps in knowledge. Data are provided under the Creative Commons Attribution 4.0 International License. Please cite this paper when the data are used in any kind of publication related to research, outreach, and teaching activities.


Assuntos
Quirópteros , Ficus , Piper , Animais , Brasil , Costa Rica , Humanos
13.
Anat Rec (Hoboken) ; 305(5): 1245-1263, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34505739

RESUMO

While the adductor musculature of the primate jaw has been extensively analyzed within the context of dietary and social ecology, little is known about the corresponding muscles of jaw abduction. Nonetheless, these muscles significantly contribute to a species' maximum gape potential, and thus might constrain dietary niche diversity and impact social display behaviors. In this study, we quantify the architectural properties of the digastric (a jaw abductor) and lateral pterygoid (a jaw abductor and anterior translator) across a broad sample of male and female anthropoid primates. We test the hypothesis that the abductor musculature reflects specialization to dietary and behavioral ecology. Our sample comprises 14 catarrhine and 13 platyrrhine species spanning a wide range of dietary and social categories. All specimens were sharp dissected and muscles subsequently chemically digested using a standardized protocol. Our findings demonstrate that relative fascicle lengths within the lateral pterygoid (but not the digastric) are significantly greater within species that habitually consume larger food items. Meanwhile, canine length is more strongly associated with fascicle lengths in the digastric than in the lateral pterygoid, particularly within males. Neither dietary mechanical resistance nor the intensity of social competition relates to the size or architectural properties of the jaw abductors. These findings suggest that dietary-and to a lesser extent, socioecological-aspects of a primate's life history may be reflected in the architecture of these muscles, albeit to varying degrees. This underlines the importance of considering the complete masticatory apparatus when interpreting the evolution of the primate jaw.


Assuntos
Músculos da Mastigação , Primatas , Animais , Dieta , Cães , Feminino , Arcada Osseodentária/fisiologia , Masculino , Músculos da Mastigação/fisiologia , Movimento
14.
Anat Rec (Hoboken) ; 305(8): 1871-1891, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34545690

RESUMO

Our knowledge of nasal cavity anatomy has grown considerably with the advent of micro-computed tomography (CT). More recently, a technique called diffusible iodine-based contrast-enhanced CT (diceCT) has rendered it possible to study nasal soft tissues. Using diceCT and histology, we aim to (a) explore the utility of these techniques for inferring the presence of venous sinuses that typify respiratory mucosa and (b) inquire whether distribution of vascular mucosa may relate to specialization for derived functions of the nasal cavity (i.e., nasal-emission of echolocation sounds) in bats. Matching histology and diceCT data indicate that diceCT can detect venous sinuses as either darkened, "empty" spaces, or radio-opaque islands when blood cells are present. Thus, we show that diceCT provides reliable information on vascular distribution in the mucosa of the nasal airways. Among the bats studied, a nonecholocating pteropodid (Cynopterus sphinx) and an oral-emitter of echolocation sounds (Eptesicus fuscus) possess venous sinus networks that drain into the sphenopalatine vein rostral to the nasopharynx. In contrast, nasopharyngeal passageways of nasal-emitting hipposiderids are notably packed with venous sinuses. The mucosae of the nasopharyngeal passageways are far less vascular in nasal-emitting phyllostomids, in which vascular mucosae are more widely distributed in the nasal cavity, and in some nectar-feeding species, a particularly large venous sinus is adjacent to the vomeronasal organ. Therefore, we do not find a common pattern of venous sinus distribution associated with nasal emission of sounds in phyllostomids and hipposiderids. Instead, vascular mucosa is more likely critical for air-conditioning and sometimes vomeronasal function in all bats.


Assuntos
Quirópteros , Cavidade Nasal , Mucosa Nasal , Veias , Microtomografia por Raio-X , Animais , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/irrigação sanguínea , Cavidade Nasal/citologia , Cavidade Nasal/diagnóstico por imagem , Mucosa Nasal/anatomia & histologia , Mucosa Nasal/irrigação sanguínea , Mucosa Nasal/citologia , Mucosa Nasal/diagnóstico por imagem , Veias/anatomia & histologia , Veias/citologia , Veias/diagnóstico por imagem
15.
Ecol Evol ; 11(22): 16153-16164, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824818

RESUMO

All organisms have specialized systems to sense their environment. Most bat species use echolocation for navigation and foraging, but which and how ecological factors shaped echolocation call diversity remains unclear for the most diverse clades, including the adaptive radiation of neotropical leaf-nosed bats (Phyllostomidae). This is because phyllostomids emit low-intensity echolocation calls and many inhabit dense forests, leading to low representation in acoustic surveys. We present a field-collected, echolocation call dataset spanning 35 species and all phyllostomid dietary guilds. We analyze these data under a phylogenetic framework to test the hypothesis that echolocation call design and parameters are specialized for the acoustic demands of different diets, and investigate the contributions of phylogeny and body size to echolocation call diversity. We further link call parameters to dietary ecology by contrasting minimum detectable prey size estimates (MDPSE) across species. We find phylogeny and body size explain a substantial proportion of echolocation call parameter diversity, but most species can be correctly assigned to taxonomic (61%) or functional (77%) dietary guilds based on call parameters. This suggests a degree of acoustic ecological specialization, albeit with interspecific similarities in call structure. Theoretical MDPSE are greatest for omnivores and smallest for insectivores. Omnivores significantly differ from other dietary guilds in MDPSE when phylogeny is not considered, but there are no differences among taxonomic dietary guilds within a phylogenetic context. Similarly, predators of non-mobile/non-evasive prey and predators of mobile/evasive prey differ in estimated MDPSE when phylogeny is not considered. Phyllostomid echolocation call structure may be primarily specialized for overcoming acoustic challenges of foraging in dense habitats, and then secondarily specialized for the detection of food items according to functional dietary guilds. Our results give insight into the possible ecological mechanisms shaping the diversity of sensory systems, and their reciprocal influence on resource use.

16.
G3 (Bethesda) ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34568918

RESUMO

Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.


Assuntos
Quirópteros , Piper , Receptores Odorantes , Animais , Quirópteros/genética , Dieta , Frutas , Receptores Odorantes/genética
17.
Proc Biol Sci ; 288(1956): 20210312, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375556

RESUMO

Despite the widespread notion that animal-mediated seed dispersal led to the evolution of fruit traits that attract mutualistic frugivores, the dispersal syndrome hypothesis remains controversial, particularly for complex traits such as fruit scent. Here, we test this hypothesis in a community of mutualistic, ecologically important neotropical bats (Carollia spp.) and plants (Piper spp.) that communicate primarily via chemical signals. We found greater bat consumption is significantly associated with scent chemical diversity and presence of specific compounds, which fit multi-peak selective regime models in Piper. Through behavioural assays, we found Carollia prefer certain compounds, particularly 2-heptanol, which evolved as a unique feature of two Piper species highly consumed by these bats. Thus, we demonstrate that volatile compounds emitted by neotropical Piper fruits evolved in tandem with seed dispersal by scent-oriented Carollia bats. Specifically, fruit scent chemistry in some Piper species fits adaptive evolutionary scenarios consistent with a dispersal syndrome hypothesis. While other abiotic and biotic processes likely shaped the chemical composition of ripe fruit scent in Piper, our results provide some of the first evidence of the effect of bat frugivory on plant chemical diversity.


Assuntos
Quirópteros , Dispersão de Sementes , Animais , Comportamento Alimentar , Frutas , Odorantes , Simbiose
18.
Trends Ecol Evol ; 36(9): 860-873, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34218955

RESUMO

Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.


Assuntos
Evolução Biológica , Ecossistema , Fenótipo , Árvores
19.
Evolution ; 75(5): 1087-1096, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742462

RESUMO

The gain or loss of anatomical features is an important mechanism of morphological evolution and ecological adaptation. Dental anomalies-the loss or gain of teeth-are widespread and a potential source of craniodental specialization among mammals, yet their macroevolutionary patterns have been rarely explored. We present the first phylogenetic comparative study of dental anomalies across the second largest mammal Order, Chiroptera (bats). We conducted an extensive literature review and surveyed a large sample of museum specimens to analyze the types and prevalence of dental anomalies across bats, and performed phylogenetic comparative analyses to investigate the role of phylogenetic history and dietary specialization on incidence of dental anomalies. We found dental anomalies have a significant phylogenetic signal, suggesting they are not simply the result of idiosyncratic mutations or random developmental disorders, but may have ancestral genetic origins or result from shared developmental pathways among closely related species. The incidence of dental anomalies was not associated with diet categories, suggesting no effect of craniodental specialization on dental anomalies across bats. Our results give insight into the macroevolutionary patterns of dental anomalies in bats, and provide a foundation for investigating new hypotheses underlying the evolution of dental variation and diversity in mammals.


Assuntos
Evolução Biológica , Quirópteros/anatomia & histologia , Dentição , Anormalidades Dentárias , Animais , Quirópteros/genética , Dieta , Filogenia
20.
Anat Rec (Hoboken) ; 304(4): 883-900, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32602652

RESUMO

Mammalian nasal capsule development has been described in only a few cross-sectional age series, rendering it difficult to infer developmental mechanisms that influence adult morphology. Here we examined a sample of Leschenault's rousette fruit bats (Rousettus leschenaultii) ranging in age from embryonic to adult (n = 13). We examined serially sectioned coronal histological specimens and used micro-computed tomography scans to visualize morphology in two older specimens. We found that the development of the nasal capsule in Rousettus proceeds similarly to many previously described mammals, following a general theme in which the central (i.e., septal) region matures into capsular cartilage before peripheral regions, and rostral parts of the septum and paries nasi mature before caudal parts. The ossification of turbinals also generally follows a rostral to the caudal pattern. Our results suggest discrete mechanisms for increasing complexity of the nasal capsule, some of which are restricted to the late embryonic and early fetal timeframe, including fissuration and mesenchymal proliferation. During fetal and early postnatal ontogeny, appositional and interstitial chondral growth of cartilage modifies the capsular template. Postnatally, appositional bone growth and pneumatization render greater complexity to individual structures and spaces. Future studies that focus on the relative contribution of each mechanism during development may draw critical inferences how nasal morphology is reflective of, or deviates from the original fetal template. A comparison of other chiropterans to nasal development in Rousettus could reveal phylogenetic patterns (whether ancestral or derived) or the developmental basis for specializations relating to respiration, olfaction, or laryngeal echolocation.


Assuntos
Quirópteros/anatomia & histologia , Ecolocação/fisiologia , Cavidade Nasal/anatomia & histologia , Animais , Cavidade Nasal/diagnóstico por imagem , Filogenia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...