Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722308

RESUMO

OBJECTIVE: This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings. Methods: We introduced PyHFO, which enables time-efficient HFO detection algorithms like short-term energy (STE) and Montreal Neurological Institute and Hospital (MNI) detectors. It incorporates deep learning models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware. Main results: The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained deep learning model or use their EEG data for custom model training. Significance: PyHFO successfully bridges the computational challenge faced in applying deep learning techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.

2.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052475

RESUMO

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Convulsões
3.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056191

RESUMO

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Ratos , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Convulsões , Estudos Multicêntricos como Assunto
4.
Epilepsy Res ; 195: 107201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562146

RESUMO

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Assuntos
Epilepsia Pós-Traumática , Epilepsia , Animais , Epilepsia Pós-Traumática/tratamento farmacológico , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem
5.
Epilepsia Open ; 8(2): 586-608, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026764

RESUMO

OBJECTIVE: We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS: Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS: Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE: Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.


Assuntos
Lesões Encefálicas Traumáticas , Proteína HMGB1 , Ratos , Masculino , Animais , Levetiracetam/farmacologia , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/tratamento farmacológico , Convulsões/tratamento farmacológico , Biomarcadores , Proteínas Sanguíneas
6.
Epilepsia ; 63(7): 1835-1848, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366338

RESUMO

OBJECTIVE: We examined whether posttraumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS: Adult Sprague Dawley rats were subjected to lateral fluid percussion injury (LFPI). PTE was examined 7 months after LFPI, during 4-week continuous video-electroencephalographic monitoring. 16S ribosomal RNA gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 month, and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFAs) were measured in fecal samples collected before LFPI by liquid chromatography with tandem mass spectrometry. RESULTS: Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE, with area under the curve (AUC) of .73. Global SCFA content was associated with the increased risk of PTE, with AUC of .722, and with 2-methylbutyric (depleted), valeric (depleted), isobutyric (enriched), and isovaleric (enriched) acids being the most important factors (AUC = .717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to .78. SIGNIFICANCE: Whereas LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Microbioma Gastrointestinal , Animais , Lesões Encefálicas Traumáticas/complicações , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Humanos , Ratos , Ratos Sprague-Dawley
7.
Epilepsia Open ; 7 Suppl 1: S59-S67, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34861102

RESUMO

Drug-resistant epilepsy (DRE) affects approximately one-third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hypothesis that posits that drug resistance is an inherent property of epilepsy related to disease severity. Seizure frequency is one measure of epilepsy severity, but frequency alone is an incomplete measure of severity and does not fully explain basic research and clinical studies on drug resistance; thus, other measures of epilepsy severity are needed. One such measure could be pathological high-frequency oscillations (HFOs), which are believed to reflect the neuronal disturbances responsible for the development of epilepsy and the generation of spontaneous seizures. In this manuscript, we will briefly review the intrinsic severity hypothesis, describe basic and clinical research on HFOs in the epileptic brain, and based on this evidence discuss whether HFOs could be a clinical measure of epilepsy severity. Understanding the mechanisms of DRE is critical for producing breakthroughs in the development and testing of novel strategies for treatment.


Assuntos
Ondas Encefálicas , Epilepsia Resistente a Medicamentos , Epilepsia , Animais , Ondas Encefálicas/fisiologia , Eletroencefalografia , Epilepsia/tratamento farmacológico , Convulsões
8.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451804

RESUMO

Transcranial focal stimulation (TFS) is a non-invasive neuromodulation strategy with neuroprotective effects. On the other hand, 6-hidroxidopamine (6-OHDA) induces neurodegeneration of the nigrostriatal system producing modifications in the dopaminergic, serotoninergic, and histaminergic systems. The present study was conducted to test whether repetitive application of TFS avoids the biogenic amines' changes induced by the intrastriatal injection of 6-OHDA. Experiments were designed to determine the tissue content of dopamine, serotonin, and histamine in the brain of animals injected with 6-OHDA and then receiving daily TFS for 21 days. Tissue content of biogenic amines was evaluated in the cerebral cortex, hippocampus, amygdala, and striatum, ipsi- and contralateral to the side of 6-OHDA injection. Results obtained were compared to animals with 6-OHDA, TFS alone, and a Sham group. The present study revealed that TFS did not avoid the changes in the tissue content of dopamine in striatum. However, TFS was able to avoid several of the changes induced by 6-OHDA in the tissue content of dopamine, serotonin, and histamine in the different brain areas evaluated. Interestingly, TFS alone did not induce significant changes in the different brain areas evaluated. The present study showed that repetitive TFS avoids the biogenic amines' changes induced by 6-OHDA. TFS can represent a new therapeutic strategy to avoid the neurotoxicity induced by 6-OHDA.

9.
Seizure ; 90: 9-16, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052088

RESUMO

Traumatic brain injury (TBI) is defined as a disturbance in brain functioning caused by an external force. The development of post traumatic epilepsy (PTE) is a serious risk associated with TBI. Indeed, other neurological impairments are also common following TBI. In this review, we analyze and discuss the most widely used and best validated rodent models of TBI, with a particular focus on their contribution to the understanding of the PTE development. Furthermore, we explore the importance of these models for the study of other neurobehavioral comorbidities associated with brain injury. The efficient and accurate diagnosis of epilepsy and other neurological comorbidities as a consequence of brain trauma should improve the survival and quality of life of patients after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Modelos Animais de Doenças , Epilepsia/epidemiologia , Epilepsia/etiologia , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Humanos , Qualidade de Vida
10.
Epilepsy Res ; 156: 106131, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076256

RESUMO

RATIONALE: The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Centre without walls is an NIH funded multicenter consortium. One of EpiBioS4Rx projects is a preclinical post-traumatic epileptogenesis biomarker study that involves three study sites: The University of Eastern Finland, Monash University (Melbourne) and the University of California Los Angeles. Our objective is to create a platform for evaluating biomarkers and testing new antiepileptogenic treatments for post-traumatic epilepsy (PTE) using the lateral fluid percussion injury (FPI) model in rats. As only 30-50% of rats with severe lateral FPI develop PTE by 6 months post-injury, prolonged video-EEG monitoring is crucial to identify animals with PTE. Our objective is to harmonize the surgical and data collection procedures, equipment, and data analysis for chronic EEG recording in order to phenotype PTE in this rat model across the three study sites. METHODS: Traumatic brain injury (TBI) was induced using lateral FPI in adult male Sprague-Dawley rats aged 11-12 weeks. Animals were divided into two cohorts: a) the long-term video-EEG follow-up cohort (Specific Aim 1), which was implanted with EEG electrodes within 24 h after the injury; and b) the magnetic resonance imaging (MRI) follow-up cohort (Specific Aim 2), at 5 months after lateral FPI. Four cortical epidural screw electrodes (2 ipsilateral, 2 contralateral) and three intracerebral bipolar electrodes were implanted (septal CA1 and the dentate gyrus, layers II and VI of the perilesional cortex both anterior and posterior to the injury site). During the 7th post-TBI month, animals underwent 4 weeks of continuous video-EEG recordings to diagnose of PTE. RESULTS: All centers harmonized the induction of TBI and surgical procedures for the implantation of EEG recordings, utilizing 4 or more EEG recording channels to cover areas ipsilateral and contralateral to the brain injury, perilesional cortex and the hippocampus and dentate gyrus. Ground and reference screw electrodes were implanted. At all sites the minimum sampling rate was 512 Hz, utilizing a finite impulse response (FIR) and impedance below 10 KΩ through the entire recording. As part of the quality control criteria we avoided electrical noise, and monitoring changes in impedance over time and the appearance of noise on the recordings. To reduce electrical noise, we regularly checked the integrity of the cables, stability of the EEG recording cap and the appropriate connection of the electrodes with the cables. Following the pipeline presented in this article and after applying the quality control criteria to our EEG recordings all of the sites were successful to phenotype seizure in chronic EEG recordings of animals after TBI. DISCUSSION: Despite differences in video-EEG acquisition equipment used, the three centers were able to consistently phenotype seizures in the lateral fluid-percussion model applying the pipeline presented here. The harmonization of methodology will help to improve the rigor of preclinical research, improving reproducibility of pre-clinical research in the search of biomarkers and therapies to prevent antiepileptogenesis.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Epilepsia Pós-Traumática/patologia , Convulsões , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Masculino , Fenótipo , Ratos Sprague-Dawley , Gravação em Vídeo/métodos
11.
Epilepsy Res ; 156: 106110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30981541

RESUMO

Studies of chronic epilepsy show pathological high frequency oscillations (HFOs) are associated with brain areas capable of generating epileptic seizures. Only a few of these studies have focused on HFOs during the development of epilepsy, but results suggest pathological HFOs could be a biomarker of epileptogenesis. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy" (EpiBioS4Rx) is a multi-center project designed to identify biomarkers of epileptogenesis after a traumatic brain injury (TBI) and evaluate treatments that could modify or prevent the development of post-traumatic epilepsy. One goal of the EpiBioS4Rx project is to assess whether HFOs could be a biomarker of post-traumatic epileptogenesis. The current study describes the work towards this goal, including the development of common surgical procedures and EEG protocols, an interim analysis of the EEG for HFOs, and identifying issues that need to be addressed for a robust biomarker analysis. At three participating sites - University of Eastern Finland (UEF), Monash University in Melbourne (Melbourne) and University of California, Los Angeles (UCLA) - TBI was induced in adult male Sprague-Dawley rats by lateral fluid-percussion injury. After injury and in sham-operated controls, rats were implanted with screw and microwire electrodes positioned in neocortex and hippocampus to record EEG. A separate group of rats had serial magnetic resonance imaging after injury and then implanted with electrodes at 6 months. Recordings 28 days post-injury were available from UEF and UCLA, but not Melbourne due to technical issues with their EEG files. Analysis of recordings from 4 rats - UEF and UCLA each had one TBI and one sham-operated control - showed EEG contained evidence of HFOs. Computer-automated algorithms detected a total of 1,819 putative HFOs and of these only 40 events (2%) were detected by all three sites. Manual review of all events verified 130 events as HFO and the remainder as false positives. Review of the 40 events detected by all three sites was associated with 88% agreement. This initial report from the EpiBioS4Rx Consortium demonstrates the standardization of EEG electrode placements, recording protocol and long-term EEG monitoring, and differences in detection algorithm HFO results between sites. Additional work on detection strategy, detection algorithm performance, and training in HFO review will be performed to establish a robust, preclinical evaluation of HFOs as a biomarker of post-traumatic epileptogenesis.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Ondas Encefálicas/fisiologia , Epilepsia Pós-Traumática/fisiopatologia , Neocórtex/fisiopatologia , Animais , Modelos Animais de Doenças , Eletrodos Implantados/psicologia , Masculino , Percussão , Ratos Sprague-Dawley
12.
Epilepsy Res ; 151: 7-16, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711714

RESUMO

Multi-center preclinical studies can facilitate the discovery of biomarkers of antiepileptogenesis and thus facilitate the diagnosis and treatment development of patients at risk of developing post-traumatic epilepsy. However, these studies are often limited by the difficulty in harmonizing experimental protocols between laboratories. Here, we assess whether the production of traumatic brain injury (TBI) using the lateral fluid-percussion injury (FPI) in adult male Sprague-Dawley rats (12 weeks at the time of injury) was harmonized between three laboratories - located in the University of Eastern Finland (UEF), Monash University in Melbourne, Australia (Melbourne) and The University of California, Los Angeles, USA (UCLA). These laboratories are part of the international multicenter-based project, the Epilepsy Bioinformatics Study for Antiepileptogenesis Therapy (EpiBioS4Rx). Lateral FPI was induced in adult male Sprague-Dawley rats. The success of methodological harmonization was assessed by performing inter-site comparison of injury parameters including duration of anesthesia during surgery, impact pressure, post-impact transient apnea, post-impact seizure-like behavior, acute mortality (<72 h post-injury), time to self-right after the impact, and severity of the injury (assessed with the neuroscore). The data was collected using Common Data Elements and Case Report Forms. The acute mortality was 15% (UEF), 50% (Melbourne) and 57% (UCLA) (p < 0.001). The sites differed in the duration of anesthesia, the shortest being at UEF < Melbourne < UCLA (p < 0.001). The impact pressure used also differed between the sites, the highest being in UEF > Melbourne > UCLA (p < 0.001). The impact pressure associated with the severity of the functional deficits (low neuroscore) (P < 0.05) only at UEF, but not at any of the other sites. Additionally, the sites differed in the duration of post-impact transient apnea (p < 0.001) and time to self-right (P < 0.001), the highest values in both parameters was registered in Melbourne. Post-impact seizure-like behavior was observed in 51% (UEF), 25% (Melbourne) and 2% (UCLA) of rats (p < 0.001). Despite the differences in means when all sites were compared there was significant overlap in injury parameters between the sites. The data reflects the technical difficulties in the production of lateral FPI across multiple sites. On the other hand, the data can be used to model the heterogeneity in human cohorts with closed-head injury. Our animal cohort will provide a good starting point to investigate the factors associated with epileptogenesis after lateral FPI.


Assuntos
Lesões Encefálicas/complicações , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/metabolismo , Cooperação Internacional , Animais , Anticonvulsivantes , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/tratamento farmacológico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
13.
Neurobiol Dis ; 123: 69-74, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29883622

RESUMO

Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Ondas Encefálicas , Encéfalo/fisiopatologia , Epilepsia Pós-Traumática/diagnóstico por imagem , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Progressão da Doença , Fenômenos Eletrofisiológicos , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/fisiopatologia , Humanos , Sono/fisiologia
14.
Epilepsy Res ; 149: 92-101, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553097

RESUMO

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is an international, multicenter, multidisciplinary study aimed at preventing epileptogenesis (EpiBioS4Rx: https://epibios.loni.usc.edu/). One of the study's major objectives is the discovery of diagnostic, prognostic, and predictive plasma protein and microRNA (miRNA) biomarkers that are sensitive, specific, and translatable to the human condition. Epilepsy due to structural brain abnormalities, secondary to neurological insults such as traumatic brain injury (TBI), currently represents ∼50% of all epilepsy cases. In the preclinical EpiBioS4Rx study, TBI was induced in adult male Sprague Dawley rats using a standardized protocol for lateral fluid-percussion injury. Whole blood was collected from the tail vein at baseline and 2, 9 and 30 days post-injury and processed for plasma separation. Biomaterial properties, sample preparation and integrity, and choice of analysis platform can significantly impact measured marker levels and, in turn, interpretation with respect to injury and/or other variables. We present here the results of procedural harmonization for the first 320 rats included in the EpiBioS4Rx study study, from three international research centers, and preliminary proteomic and miRNA analyses. We also discuss experimental considerations for establishing rigorous quality controls with the goal of harmonizing operating procedures across study sites, and delivering high-quality specimens for preclinical biomarker discovery in a rat model of post-traumatic epilepsy (PTE).


Assuntos
Proteínas Sanguíneas/metabolismo , Epilepsia Pós-Traumática/metabolismo , Homeostase/fisiologia , MicroRNAs/metabolismo , Animais , Biomarcadores/metabolismo , Biologia Computacional , Modelos Animais de Doenças , Hemoglobinas/metabolismo , Cooperação Internacional , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Análise Serial de Proteínas , Proteômica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Fatores de Tempo
15.
Epilepsy Behav ; 88: 283-294, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30336420

RESUMO

Synaptic vesicle protein 2A (SV2A) has become an attractive target of investigation because of its role in the pathophysiology of epilepsy; SV2A is expressed ubiquitously throughout the brain in all nerve terminals independently of their neurotransmitter content and plays an important but poorly defined role in neurotransmission. Previous studies have shown that modifications in the SV2A protein expression could be a direct consequence of disease severity. Furthermore, these SV2A modifications may depend on specific changes in the nerve tissue following the induction of epilepsy and might be present in both excitatory and inhibitory terminals. Thus, we evaluated SV2A protein expression throughout the hippocampi of lithium-pilocarpine rats after status epilepticus (SE) and during early and late epilepsy. In addition, we determined the γ-aminobutyric acid (GABA)ergic or glutamatergic nature associated with SV2A modifications. Wistar rats were treated with lithium-pilocarpine to induce SE and subsequently were shown to present spontaneous recurrent seizures (SRS). Later, we conducted an exhaustive semi-quantitative analysis of SV2A optical density (OD) throughout the hippocampus by immunohistochemistry. Levels of the SV2A protein were substantially increased in layers formed by principal neurons after SE, mainly because of GABAergic activity. No changes were observed in the early stage of epilepsy. In the late stage of epilepsy, there were minor changes in SV2A OD compared with the robust modifications of SE; however, SV2A protein expression generally showed an increment reaching significant differences in two dendritic layers and hilus, without clear modifications of GABAergic or glutamatergic systems. Our results suggest that the SV2A variations may depend on several factors, such as neuronal activity, and might appear in both excitatory and inhibitory systems depending on the epilepsy stage.


Assuntos
Hipocampo/metabolismo , Cloreto de Lítio/toxicidade , Glicoproteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Pilocarpina/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Estado Epiléptico/genética
16.
Neurochem Int ; 120: 224-232, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30213635

RESUMO

Status epilepticus (SE) is a neurological condition that frequently induces severe neuronal injury in the hippocampus, subsequent epileptogenesis and pharmacoresistant spontaneous recurrent seizures (SRS). The repeated administration of LEV (a broad-spectrum antiepileptic drug) during the post-SE period does not prevent the subsequent development of SRS. However, this treatment reduces SE-induced neurodegeneration in the hippocampus. Conversely, propylparaben (PPB) is a widely used antimicrobial that blocks voltage-dependent Na+ channels, induces neuroprotection and reduces epileptiform activity in vitro. The present study attempted to determine if the neuroprotective effects induced by LEV are augmented when combined with a sub-effective dose of PPB. Long-term SE-induced consequences (hyperexcitability, high glutamate release, neuronal injury and volume loss) were evaluated in the hippocampus of rats. LEV alone, as well as combined with PPB, did not prevent the occurrence of SRS. However, animals treated with LEV plus PPB showed high prevalence of low frequency oscillations (0.1-4 Hz and 8-90 bands, p < 0.001) and low prevalence of high frequency activity (90-250 bands, p < 0.001) during the interictal period. In addition, these animals presented lower extracellular levels of glutamate, decreased rate of neurodegeneration and a similar hippocampal volume compared to the control conditions. This study's results suggest that LEV associated with PPB could represent a new therapeutic strategy to reduce long-term consequences induced by SE that facilitate pharmacoresistant SRS.


Assuntos
Hipocampo/efeitos dos fármacos , Levetiracetam/farmacologia , Parabenos/farmacologia , Estado Epiléptico/tratamento farmacológico , Tempo , Animais , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Lítio/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pilocarpina/farmacologia , Ratos Wistar , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente
17.
Epilepsy Behav ; 87: 200-206, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115604

RESUMO

Several studies indicate that sodium cromoglycate (CG) induces neuroprotective effects in acute neurological conditions. The present study focused on investigating if the use of CG in rats during the post-status epilepticus (post-SE) period reduces the acute and long-term consequences of seizure activity. Our results revealed that animals that received a single dose of CG (50 mg/kg s.c.: subcutaneously) during the post-SE period showed a lower number of neurons in the process of dying in the dentate gyrus, hilus, cornu ammonis 1 (CA1), and CA3 of the dorsal hippocampus than the rats that received the vehicle. However, this effect was not evident in layers V-VI of the sensorimotor cortex or the lateral-posterior thalamic nucleus. A second experiment showed that animals that received CG subchronically (50 mg/kg s.c. every 12 h for 5 days followed by 24 mg/kg/day s.c. for 14 days using osmotic minipumps) after SE presented fewer generalized convulsive seizures and less neuronal damage in the lateral-posterior thalamic nucleus but not in the hippocampus or cortex. Our data indicate that CG can be used as a therapeutic strategy to reduce short- and long-term neuronal damage in the hippocampus and thalamus, respectively. The data also indicate that CG can reduce the expression of generalized convulsive spontaneous seizures when it is given during the latent period of epileptogenesis.


Assuntos
Cromolina Sódica/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Animais , Cromolina Sódica/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Estado Epiléptico/fisiopatologia , Fatores de Tempo
18.
Neurotoxicology ; 59: 110-120, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28174044

RESUMO

Propylparaben (PPB) induces cardioprotection after ischemia-reperfusion injury by inhibiting voltage-dependent Na+ channels. The present study focuses on investigating whether the i.p. application of 178mg/kg PPB after pilocarpine-induced status epilepticus (SE) reduces the acute and long-term consequences of seizure activity. Initially, we investigated the effects of a single administration of PPB after SE. Our results revealed that compared to rats receiving diazepam (DZP) plus vehicle after 2h of SE, animals receiving a single dose of PPB 1h after DZP injection presented 126% (p<0.001) lower extracellular levels of glutamate in the hippocampus. This effect was associated with an increased potency of low-frequency oscillations (0.1-13Hz bands, p<0.001), a reduced potency of 30-250Hz bands (p<0.001) and less neuronal damage in the hippocampus. The second experiment examined whether the subchronic administration of PPB during the post-SE period is able to prevent the long-term consequences of seizure activity. In comparison to animals that were treated subchronically with vehicle after SE, rats administered with PPB for 5 days presented lower hippocampal excitability and interictal glutamate release, astrogliosis, and neuroprotection in the dentate gyrus. Our data indicate that PPB, when applied after SE, can be used as a therapeutic strategy to reduce the consequences of seizure activity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/uso terapêutico , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Parabenos/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Contagem de Células , Diazepam/uso terapêutico , Modelos Animais de Doenças , Estimulação Elétrica , Fluoresceínas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Agonistas Muscarínicos/toxicidade , Fosfopiruvato Hidratase/metabolismo , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
19.
Epilepsy Behav ; 49: 33-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26006058

RESUMO

The aim of the present study was to evaluate the effects of transcranial focal electrical stimulation (TFS) on γ-aminobutyric acid (GABA) and glutamate release in the hippocampus under basal conditions and during pilocarpine-induced status epilepticus (SE). Animals were previously implanted with a guide cannula attached to a bipolar electrode into the right ventral hippocampus and a concentric ring electrode placed on the skull surface. The first microdialysis experiment was designed to determine, under basal conditions, the effects of TFS (300 Hz, 200 µs biphasic square pulses, for 30 min) on afterdischarge threshold (ADT) and the release of GABA and glutamate in the hippocampus. The results obtained indicate that at low current intensities (<2800 µA), TFS enhances and decreases the basal extracellular levels of GABA and glutamate, respectively. However, TFS did not modify the ADT. During the second microdialysis experiment, a group of animals was subjected to SE induced by pilocarpine administration (300 mg/kg, i.p.; SE group). The SE was associated with a significant rise of GABA and glutamate release (up to 120 and 182% respectively, 5h after pilocarpine injection) and the prevalence of high-voltage rhythmic spikes and increased spectral potency of delta, gamma, and theta bands. A group of animals (SE-TFS group) received TFS continuously during 2h at 100 µA, 5 min after the establishment of SE. This group showed a significant decrease in the expression of the convulsive activity and spectral potency in gamma and theta bands. The extracellular levels of GABA and glutamate in the hippocampus remained at basal conditions. These results suggest that TFS induces anticonvulsant effects when applied during the SE, an effect associated with lower amino acid release. This article is part of a Special Issue entitled "Status Epilepticus".


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/terapia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Pilocarpina , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo
20.
Neuropharmacology ; 92: 49-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25578265

RESUMO

Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p < 0.001) and neuronal damage in dentate gyrus, CA1 and CA3. In contrast to SS-SE group, rats from the CG-SE group showed increased latency to the establishment of the status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment.


Assuntos
Antiasmáticos/uso terapêutico , Cromolina Sódica/uso terapêutico , Hipocampo/patologia , Histamina/metabolismo , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Análise de Variância , Animais , Anticonvulsivantes/uso terapêutico , Contagem de Células , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Eletroencefalografia , Fluoresceínas/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Pilocarpina , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...