Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-1): 034206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632786

RESUMO

Despite the periodic kicks, a linear kicked rotor (LKR) is an integrable and exactly solvable model in which the kinetic energy term is linear in momentum. It was recently shown that spatially interacting LKRs are also integrable, and results in dynamical localization in the corresponding quantum regime. Similar localized phases exist in other nonintegrable models such as the coupled relativistic kicked rotors. This work, using a two-body LKR, demonstrates two main results; first, it is shown that chaos can be induced in the integrable linear kicked rotor through interactions between the momenta of rotors. An analytical estimate of its Lyapunov exponent is obtained. Second, the quantum dynamics of this chaotic model, upon variation of kicking and interaction strengths, is shown to exhibit a variety of phases: classically induced localization, dynamical localization, subdiffusive, and diffusive phases. We point out the signatures of these phases from the perspective of entanglement production in this system. By defining an effective Hilbert space dimension, the entanglement growth rate can be understood using appropriate random matrix averages.

2.
Phys Rev E ; 108(4-1): 044208, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978627

RESUMO

Quantum directed transport can be realized in noninteracting, deterministic, chaotic systems by appropriately breaking the spatiotemporal symmetries in the potential. In this work, the focus is on the class of interacting two-body quantum systems whose classical limit is chaotic. It is shown that one subsystem effectively acts as a source of "noise" to the other leading to intrinsic temporal symmetry breaking. Then, the quantum directed currents, even if prohibited by symmetries in the composite system, can be realized in the subsystems. This current is of quantum origin and does not arise from semiclassical effects. This protocol provides a minimal framework-broken spatial symmetry in the potential and presence of interactions-for realizing directed transport in interacting chaotic systems. It is also shown that the magnitude of directed current undergoes multiple current reversals upon varying the interaction strength and this allows for controlling the currents. It is explicitly demonstrated in the two-body interacting kicked rotor model. The interaction-induced mechanism for subsystem directed currents would be applicable to other interacting quantum systems as well.

3.
Phys Rev E ; 108(3-1): 034307, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849173

RESUMO

Polarization of opinions has been empirically noted in many online social network platforms. Traditional models of opinion dynamics, based on statistical physics principles, do not account for the emergence of polarization and echo chambers in online network platforms. A recently introduced opinion dynamics model that incorporates the homophily factor-the tendency of agents to connect with those holding similar opinions as their own-captures polarization and echo chamber effects. In this work, we provide a nonintrusive framework for mildly nudging agents in an online community to form random connections. This is shown to lead to significant depolarization of opinions and decrease the echo chamber effects. Though a mild nudge effectively avoids polarization, overdoing this leads to another undesirable effect, namely, radicalization. Further, we obtain the optimal nudge probability to avoid the extremes of polarization and radicalization outcomes.

4.
Phys Rev E ; 106(3-1): 034207, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266807

RESUMO

Atom-optics kicked rotor represents an experimentally reliable version of the paradigmatic quantum kicked rotor system. In this system, a periodic sequence of kicks are imparted to the cold atomic cloud. After a short initial diffusive phase the cloud settles down to a stationary state due to the onset of dynamical localization. In this paper, to explore the interplay between localized and diffusive phases, we experimentally implement a modification to this system in which the sign of the kick sequence is flipped after every M kicks. This is achieved in our experiment by allowing free evolution for half the Talbot time after every M kicks. Depending on the value of M, this modified system displays a combination of enhanced diffusion followed by asymptotic localization. This is explained as resulting from two competing processes-localization induced by standard kicked rotor type kicks, and diffusion induced by the half Talbot time evolution. The experimental and numerical simulations agree with one another. The evolving states display localized but nonexponential wave function profiles. This provides another route to quantum control in the kicked rotor class of systems.

5.
Phys Rev E ; 105(1-1): 014315, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193284

RESUMO

Extreme events have low occurrence probabilities and display pronounced deviation from their average behavior, such as earthquakes or power blackouts. Such extreme events occurring on the nodes of a complex network have been extensively studied earlier through the modeling framework of unbiased random walks. They reveal that the occurrence probability for extreme events on nodes of a network has a strong dependence on the nodal properties. Apart from these, a recent work has shown the independence of extreme events on edges from those occurring on nodes. Hence, in this work, we propose a more general formalism to study the properties of extreme events arising from biased random walkers on the edges of a network. This formalism is applied to biases based on a variety network centrality measures including PageRank. It is shown that with biased random walkers as the dynamics on the network, extreme event probabilities depend on the local properties of the edges. The probabilities are highly variable for some edges of the network, while they are approximately a constant for some other edges on the same network. This feature is robust with respect to different biases applied to the random walk algorithm. Further, using the results from this formalism, it is shown that a network is far more robust to extreme events occurring on edges when compared to those occurring on the nodes.

6.
Chaos ; 31(11): 113131, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34881581

RESUMO

Many natural and physical processes display long memory and extreme events. In these systems, the measured time series is invariably contaminated by noise and/or missing data. As the extreme events display a large deviation from the mean behavior, noise and/or missing data do not affect the extreme events as much as it affects the typical values. Since the extreme events also carry the information about correlations in the full-time series, we can use them to infer the correlation properties of the latter. In this work, we construct three modified time series using only the extreme events from a given time series. We show that the correlations in the original time series and in the modified time series are related, as measured by the exponent obtained from the detrended fluctuation analysis technique. Hence, the correlation exponents for a long memory time series can be inferred from its extreme events alone. We demonstrate this approach for several empirical time series.

7.
Phys Rev E ; 104(5): L052103, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942787

RESUMO

The time taken by a random variable to cross a threshold for the first time, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional "sensor" monitoring the threshold crossing event is always active. In many realistic scenarios, the sensor monitoring the stochastic process works intermittently. Then, the relevant quantity of interest is the first detection time, which denotes the time when the sensor detects the random variable to be above the threshold for the first time. In this Letter, a birth-death process monitored by a random intermittent sensor is studied for which the first detection time distribution is obtained. In general, it is shown that the first detection time is related to and is obtainable from the first passage time distribution. Our analytical results display an excellent agreement with simulations. Furthermore, this framework is demonstrated in several applications-the susceptible infected susceptible compartmental and logistic models and birth-death processes with resetting. Finally, we solve the practically relevant problem of inferring the first passage time distribution from the first detection time.

8.
Chaos ; 30(4): 043111, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32357667

RESUMO

Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of extreme events on complex networks had focused only on the nodal events. If random walks are used to model the transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.

9.
Phys Rev E ; 100(6-1): 060201, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962514

RESUMO

The dynamics of chaotic Hamiltonian systems such as the kicked rotor continues to guide our understanding of transport and localization processes. The localized states of the quantum kicked rotor decay due to decoherence effects if subjected to noise. The associated quantum diffusion increases monotonically as a function of a parameter characterizing the noise distribution. In this Rapid Communication, for the atom-optics Lévy kicked rotor, the quantum diffusion displays nonmonotonic behavior as a function of a parameter characterizing the Lévy distribution. The optimal diffusion rates are experimentally obtained using an ultracold cloud of rubidium atoms in a pulsed optical lattice. The parameters for optimal diffusion rates are obtained analytically and show a good agreement with our experimental and numerical results. The nonmonotonicity is shown to be a quantum effect that vanishes in the classical limit.

10.
Phys Rev E ; 97(6-1): 062212, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011473

RESUMO

Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra are modeled through an appropriate ensemble described by random matrix theory. However, a small subset of states violates this principle and displays eigenstate localization, a counterintuitive feature known to arise due to purely quantum or semiclassical effects. In the spectrum of chaotic systems, the localized and random states interact with one another and modify the spectral statistics. In this work, a 3×3 random matrix model is used to obtain exact results for the ratio of spacing between a generic and localized state. We consider time-reversal-invariant as well as noninvariant scenarios. These results agree with the spectra computed from realistic physical systems that display localized eigenmodes.

11.
Phys Rev E ; 97(3-1): 032217, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776057

RESUMO

It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet states of periodically kicked systems with singularities in the potential would have power-law profile. In this work, we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We map this system to a tight-binding model and show that the nature of decay profile depends on energy band spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the entire system.

12.
Phys Rev Lett ; 118(17): 174101, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498690

RESUMO

Quantum systems lose coherence upon interaction with the environment and tend towards classical states. Quantum coherence is known to exponentially decay in time so that macroscopic quantum superpositions are generally unsustainable. In this work, slower than exponential decay of coherences is experimentally realized in an atom-optics kicked rotor system subjected to nonstationary Lévy noise in the applied kick sequence. The slower coherence decay manifests in the form of quantum subdiffusion that can be controlled through the Lévy exponent. The experimental results are in good agreement with the analytical estimates and numerical simulations for the mean energy growth and momentum profiles of an atom-optics kicked rotor.

13.
Phys Rev E ; 95(1-1): 012216, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208355

RESUMO

Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.

14.
Phys Rev E ; 93(6): 060203, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415192

RESUMO

The relation between classically chaotic dynamics and quantum localization is studied in a system that violates the assumptions of the Kolmogorov-Arnold-Moser (KAM) theorem, namely, the kicked rotor in a discontinuous potential barrier. We show that the discontinuous barrier induces chaos and more than two distinct subdiffusive energy growth regimes, the latter being an unusual feature for Hamiltonian chaos. We show that the dynamical localization in the quantized version of this system carries the imprint of non-KAM classical dynamics through the dependence of quantum break time on subdiffusion exponents. We briefly comment on the experimental feasibility of this system.

15.
Artigo em Inglês | MEDLINE | ID: mdl-26465449

RESUMO

Correlation and similarity measures are widely used in all the areas of sciences and social sciences. Often the variables are not numbers but are instead qualitative descriptors called categorical data. We define and study similarity matrix, as a measure of similarity, for the case of categorical data. This is of interest due to a deluge of categorical data, such as movie ratings, top-10 rankings, and data from social media, in the public domain that require analysis. We show that the statistical properties of the spectra of similarity matrices, constructed from categorical data, follow random matrix predictions with the dominant eigenvalue being an exception. We demonstrate this approach by applying it to the data for Indian general elections and sea level pressures in the North Atlantic ocean.

16.
Artigo em Inglês | MEDLINE | ID: mdl-25314414

RESUMO

The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.


Assuntos
Administração Financeira/estatística & dados numéricos , Modelos Estatísticos , Processos Estocásticos , Fatores de Tempo
17.
Artigo em Inglês | MEDLINE | ID: mdl-23944597

RESUMO

Extreme events taking place on networks are not uncommon. We show that it is possible to manipulate the extreme event occurrence probabilities and distribution over the nodes of a scale-free network by tuning the nodal capacity. This can be used to reduce the number of extreme event occurrences. However, monotonic nodal capacity enhancements, beyond a point, do not lead to any substantial reduction in the number of extreme events. We point out the practical implication of this result for network design in the context of reducing extreme event occurrences.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056120, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004834

RESUMO

Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.

19.
Phys Rev Lett ; 106(18): 188701, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635132

RESUMO

A wide spectrum of extreme events ranging from traffic jams to floods take place on networks. Motivated by these, we employ a random walk model for transport and obtain analytical and numerical results for the extreme events on networks. They reveal an unforeseen, and yet a robust, feature: small degree nodes of a network are more likely to encounter extreme events than the hubs. Further, we also study the recurrence time distribution and scaling of the probabilities for extreme events. These results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle extreme events.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 2): 056212, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21230568

RESUMO

We study the classical and quantum dynamics of periodically kicked particles placed initially within an open double-barrier structure. This system does not obey the Kolmogorov-Arnold-Moser (KAM) theorem and displays chaotic dynamics. The phase-space features induced by non-KAM nature of the system lead to dynamical features such as the nonequilibrium steady state, classically induced saturation of energy growth and momentum filtering. We also comment on the experimental feasibility of this system as well as its relevance in the context of current interest in classically induced localization and chaotic ratchets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...