Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339270

RESUMO

Congenital cataracts are the prime cause for irreversible blindness in children. The global incidence of congenital cataract is 2.2-13.6 per 10,000 births, with the highest prevalence in Asia. Nearly half of the congenital cataracts are of familial nature, with a predominant autosomal dominant pattern of inheritance. Over 38 of the 45 mapped loci for isolated congenital or infantile cataracts have been associated with a mutation in a specific gene. The clinical and genetic heterogeneity of congenital cataracts makes the molecular diagnosis a bit of a complicated task. Hence, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 11 pedigrees affected with familial congenital cataracts. Analysis of the WES data for known cataract genes identified causative mutations in six pedigrees (55%) in PAX6, FYCO1 (two variants), EPHA2, P3H2,TDRD7 and an additional likely causative mutation in a novel gene NCOA6, which represents the first dominant mutation in this gene. This study identifies a novel cataract gene not yet linked to human disease. NCOA6 is a transcriptional coactivator that interacts with nuclear hormone receptors to enhance their transcriptional activator function.


Assuntos
Alelos , Catarata/genética , Coativadores de Receptor Nuclear/genética , Catarata/patologia , Efrina-A2/genética , Feminino , Testes Genéticos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fator de Transcrição PAX6/genética , Linhagem , Pró-Colágeno-Prolina Dioxigenase/genética , Receptor EphA2 , Ribonucleoproteínas/genética , Sequenciamento Completo do Genoma
2.
Ophthalmic Genet ; 41(6): 556-562, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32811259

RESUMO

PURPOSE: To identify the mutation causing an autosomal dominant congenital nuclear cataract in a south Indian family by whole exome sequencing and to characterize further phenotypically the same in a zebra fish model. METHODS: A six-generation family (DKEC1) with several affected members registered at the Regional Institute of Ophthalmology (RIO), Chennai was documented to have congenital nuclear cataract. Detailed clinical history and blood samples were collected from all available family members. Genomic DNA of the proband was subjected to whole exome sequencing. Sequence variations suggestive of putative mutations were further confirmed by bidirectional sequencing and restriction site analysis. Functional analysis of the mutant CRYGC E128* in zebrafish embryos was done to dissect out the pathogenicity. RESULTS: A unique variation viz., c.382 G > T in the coding region of the CRYGC gene, resulting in a premature stop codon at position 128 (E128*) was documented in the affected family members. The same was absent in unaffected family members and in 120 unrelated population controls checked. Bioinformatic tools predicted that the mutation might cause a deleterious effect on protein structure and function. Molecular function analysis of this novel mutation (p. E128*, CRYGC) in the zebrafish indicated this mutation to impair lens transparency. CONCLUSION: This study identified a novel CRYGC mutation, E128* to cause autosomal dominant congenital nuclear cataract in a large south Indian family. Our study provides a new insight onto how the mutation might affect the γC-crystallin structure and function besides emphasizing the need for genetic diagnosis toward vision restoration.


Assuntos
Povo Asiático/genética , Catarata/congênito , Mutação , Fenótipo , gama-Cristalinas/genética , Sequência de Aminoácidos , Sequência de Bases , Catarata/genética , Catarata/patologia , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...