Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: ncomms11823, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27293116

RESUMO

The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 386-97, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25104284

RESUMO

Efforts to improve the ease of self-assembly formation through non-covalent interaction has led to the development of zinc phthalocyanine (zinc-2,9,16,23-tetra-tert-butyl phthalocyanine, i.e., ZnPc) as a high potential photosensitizer molecule towards C60 pyrrolidine tris-acid ethyl ester (PyC60) in toluene and 1,2-dichlorobenzene (DCB). Steady state fluorescence experiment elicits efficient quenching of the fluorescence intensity of both H2- and ZnPc in presence of PyC60. The average value of binding constant for PyC60/H2-Pc and PyC60/ZnPc systems in toluene (DCB) are determined to be 9910 (13,460) and 12,710 (24,060) dm(3) mol(-1), respectively. Lifetime experiment yields ∼3 times larger magnitude of charge separated rate constant for the PyC60/ZnPc system compared to PyC60/H2-Pc in toluene. Photoinduced energy transfer between PyC60 and H2- (/ZnPc) has been evidenced with nanosecond laser photolysis method; transient absorption studies establish that energy transfer from (T)PyC60(∗) to H2- and ZnPc occurs predominantly, as confirmed by the consecutive appearance of the triplet states of PyC60.


Assuntos
Fulerenos/química , Indóis/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Absorção Fisico-Química , Isoindóis , Cinética , Modelos Moleculares , Espectroscopia de Prótons por Ressonância Magnética , Prótons , Teoria Quântica , Solventes , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Eletricidade Estática , Fatores de Tempo , Compostos de Zinco
3.
Artigo em Inglês | MEDLINE | ID: mdl-24291433

RESUMO

The present paper reports the photophysical insights on supramolecular interaction of a monoporphyrin derivative, namely, 1, with C60 pyrrolidine tris-acid ethyl ester (PyC60) in toluene and benzonitrile. The ground state interaction between PyC60 and 1 is facilitated through charge transfer interaction. Both UV-Vis and steady state measurements elicit almost similar magnitude of binding constant for the PyC60/1 complex in toluene and benzonitrile, viz., 6825 and 6540 dm(3 )mol(-1), respectively. Life time measurement evokes that rate of charge separation is fast in benzonitrile. Both hybrid-DFT and DFT calculations provide very good support in favor of electronic charge-separation in PyC60/1 system in vacuo.


Assuntos
Fenômenos Químicos , Elétrons , Fulerenos/química , Metaloporfirinas/química , Porfirinas/química , Pirrolidinas/química , Absorção , Cinética , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Soluções , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Eletricidade Estática , Fatores de Tempo , Titulometria
4.
Artigo em Inglês | MEDLINE | ID: mdl-22940053

RESUMO

The present paper reports the synthesis of free-base (H(2)-1) and zinc-triporphyrins Zn-1, and their supramolecular complexes with C(60) and C(70) in toluene. While UV-Vis studies reveal ground state interaction between fullerenes and triporphyrins, steady state fluorescence measurements establish quenching of fluorescence of triporphyrins by fullerenes. Binding constants data evoke that Zn-1 may be employed as an efficient tweezers for C(70) in toluene. Time resolved emission studies establish relatively long-lived charge separated state for the C(70)/triporphyrin complexes. Molecular mechanics force field calculations in vacuo interpret the stability difference between C(60)/and C(70)/complexes of triporphyrin.


Assuntos
Fenômenos Químicos , Fulerenos/química , Porfirinas/química , Cinética , Soluções , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Fatores de Tempo
5.
J Phys Chem B ; 116(39): 11979-98, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22909035

RESUMO

The present article reports photophysical studies on supramolecular interaction of a zinc phthalocyanine derivative, namely, zinc-2,9,16,23-tetra-tert-butyl phthalocyanine (1) with C(60) and C(70) in solvents having varying polarity, i.e., toluene and 1,2-dichlorobenzene (DCB). The interesting feature of the present work is the observation of charge transfer (CT) absorption bands of the fullerene/1 complexes in DCB. Utilizing the CT transition energy, many important physicochemical parameters like vertical ionization potential of 1, degrees of CT, oscillator strength, transition dipole moment, and resonance energy of interaction have been determined in the present case. The influences of 1 on the UV-vis spectral characteristics of C(60) and C(70) have been explained using a theoretical model that takes into account the interaction between electronic subsystems of 1 with fullerenes. Steady state fluorescence experiment elicits efficient quenching of the fluorescence intensity of 1 in the presence of both C(60) and C(70). The average binding constants of the C(60) and C(70) complexes of 1 (estimated by UV-vis and steady state fluorescence measurements) are determined to be 18,330 dm(3)·mol(-1) (12,595 dm(3)·mol(-1)) and 19,160 dm(3)·mol(-1) (15,292 dm(3)·mol(-1)) in toluene (DCB), respectively. Lifetime experiment yields a larger magnitude of charge separated rate constant for the C(70)/1 species. The faster charge recombination of the fullerene/1 systems observed in more polar solvent results from solvent reorganization energies. Quantum chemical calculations by the ab initio method explore the geometry and electronic structure of the supramolecules and testify the significant redistribution of charge between fullerenes and 1 during fullerene/1 interaction. A variable temperature (13)C NMR study nicely demonstrates that the end-on orientation of C(70) is very much responsible for the low selectivity in binding between C(60)/1 and C(70)/1 systems. Free energy of charge recombination and free energy of radical ion-pair formation signify that electron transfer from the excited 1 to C(60) and C(70) in the C(60)/1 and C(70)/1 complexes, respectively, is an unlikely process. Finally, transient absorption measurements in the visible region establish that energy transfer from (T)C(60*) (and (T)C(70*)) to 1 occurs predominantly in both toluene and DCB, which is subsequently confirmed by the consecutive appearance of the triplet state of 1.


Assuntos
Fulerenos/química , Indóis/química , Compostos Organometálicos/química , Teoria Quântica , Absorção , Transporte de Elétrons , Isoindóis , Modelos Moleculares , Conformação Molecular , Soluções , Solventes/química , Espectrometria de Fluorescência , Compostos de Zinco
6.
Chemphyschem ; 13(7): 1956-61, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22241834

RESUMO

The kinetics of excited-state intramolecular electron-transfer reaction and dynamics of solvation of the intramolecular charge transfer (ICT) state of 4-(N,N'-dimethylamino)benzonitrile (DMABN) was studied in 1-butyl-3-methylimidazloium hexafluorophosphate, [bmim][PF(6)], by monitoring the dual fluorescence of the system. The picosecond time-resolved emission spectra (TRES) of DMABN exhibit decay of the locally excited (LE) emission intensity and shift of the ICT emission peak position with time, thus capturing the kinetics of evolution of the ICT state from the LE state and solvent relaxation of the ICT state. These results show that the LE→ICT transformation rate is determined not by the slow dynamics of solvation in ionic liquid, but is controlled mainly by the rate of structural reorganization of the molecule, which accompanies the electron-transfer process in this polar viscous medium. Even though both solvent reorganization around photo-excited DMABN and structural rearrangement of the molecule are dependent on the viscosity of the medium, it is the latter process that contributes to the viscosity dependence of the LE→ICT transformation.

7.
Chemphyschem ; 12(15): 2735-41, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22002891

RESUMO

Fluorescence quenching of CdS quantum dots (QDs) by 4-azetidinyl-7-nitrobenz-2-oxa-1,3-diazole (NBD), where the two quenching partners satisfy the spectral overlap criterion necessary for Förster resonance energy transfer (FRET), is studied by steady-state and time-resolved fluorescence techniques. The fluorescence quenching of the QDs is accompanied by an enhancement of the acceptor fluorescence and a reduction of the average fluorescence lifetime of the donor. Even though these observations are suggestive of a dynamic energy transfer process, it is shown that the quenching actually proceeds through a static interaction between the quenching partners and is probably mediated by charge-transfer interactions. The bimolecular quenching rate constant estimated from the Stern-Volmer plot of the fluorescence intensities, is found to be exceptionally high and unrealistic for the dynamic quenching process. Hence, a kinetic model is employed for the estimation of actual quencher/QD ratio dependent exciton quenching rate constants of the fluorescence quenching of CdS by NBD. The present results point to the need for a deeper analysis of the experimental quenching data to avoid erroneous conclusions.


Assuntos
Compostos de Cádmio/química , Transferência Ressonante de Energia de Fluorescência , Oxidiazóis/química , Pontos Quânticos , Sulfetos/química , Fluorescência , Cinética , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência , Propriedades de Superfície
8.
J Phys Chem A ; 115(35): 9929-40, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21774489

RESUMO

The present article reports, for the first time, the photophysical aspects of noncovalent interaction of a fullerene derivative, namely, C(60) pyrrolidine tris-acid ethyl ester (PyC(60)) with a series of zincphthalocyanines, for example, underivatized zincphthalocyanine (1), zinc-1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (2), and zinc-2,3,9,10,16,17,23,24-octakis-(octyloxy)-29H,31H-phthalocyanine (3) in toluene. Ground state electronic interaction of PyC(60) with 1, 2 and 3 has been evidenced from the observation of well-defined charge transfer (CT) absorption bands in the visible region. Utilizing the CT transition energy, vertical electron affinity (E(A)(v)) of PyC(60) is determined. Steady state fluorescence experiment enables us to determine the value of binding constant (K) in the magnitude of 2.60 × 10(4) dm(3)·mol(-1), 2.20 × 10(4) dm(3)·mol(-1), and 1.27 × 10(4) dm(3)·mol(-1) for the noncovalent complexes of PyC(60) with 1, 2, and 3, respectively. K values of PyC(60)-ZnPc complexes suggest that PyC(60) is incapable of discriminating between 1, 2, and 3 in solution. Lifetime experiment signifies the importance of static quenching phenomenon for our presently investigated supramolecules and it yields larger magnitude of charge separated rate constant for the PyC(60)-1 species in toluene. Photoinduced energy transfer between PyC(60) and ZnPc derivatives, namely, 1, 2, and 3, in toluene, has been evidenced with nanosecond laser photolysis method by observing the transient absorption bands in the visible region; transient absorption studies establish that energy transfer from (T)PyC(60)* to the ZnPc occurs predominantly, as confirmed by the consecutive appearance of the triplet states of PyC(60). Theoretical calculations at semiempirical level (PM3) evoke the single projection geometric structures for the PyC(60)-ZnPc systems in vacuo, which also proves that interaction between PyC(60) and ZnPc is governed by the electrostatic mechanism rather than dispersive forces associated with π-π interaction.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 78(5): 1364-75, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367652

RESUMO

The present paper reports the photophysical investigations on supramolecular interaction of a phthalocyanine derivative, namely, 2,9,16,23-tetra-tert-butyl-29H,31H-Pc (1) with C(60) and C(70) in toluene. The binding constants of the C(60) and C(70) complexes of 1 are estimated to be 27,360 and 25,205 dm(3), respectively. Transient absorption measurements in the visible region establishes that energy transfer from C60*T (and C70*T) to 1 occurs predominantly in toluene which is subsequently confirmed by the consecutive appearance of the triplet states of 1. Quantum chemical calculations at DFT level of theory explore the geometry and electronic structure of the supramolecules and testify the significant redistribution of charge between fullerenes and 1.


Assuntos
Fulerenos/química , Indóis/química , Teoria Quântica , Absorção , Eletricidade , Isoindóis , Cinética , Modelos Químicos , Fotólise , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica , Fatores de Tempo
10.
J Phys Chem B ; 114(28): 9195-200, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20575556

RESUMO

The influence of polarity, viscosity, and hydrogen bond donating ability of the medium on the fluorescence behavior of crystal violet lactone (CVL), which undergoes excited state electron transfer reaction and exhibits dual fluorescence from two different electronic states, termed as CT(A) and CT(B), has been studied in six different room temperature ionic liquids (ILs) using steady state and time-resolved emission techniques. It is shown that the excited state CT(A) --> CT(B) transformation and dual fluorescence of CVL can be controlled by appropriate choice of the ILs. While dual fluorescence of CVL is clearly observed in pyrrolidinium IL, the molecule exhibits a single fluorescence band in ammonium IL. While the second emission from the CT(B) state can barely be seen in 1,3-dialkylimidazolium ILs, dual fluorescence is quite prominent in 1-butyl-2,3-dimethylimidazolium IL, [bmMim][Tf(2)N]. These contrasting results have been explained taking into account the hydrogen bonding interactions of the 1,3-dialkylimidazolium ions (mediated through the C(2)-hydrogen) with CVL and the viscosity of the ILs. The excited state CT(A) --> CT(B) reaction kinetics has been studied in IL by monitoring the time-evolution of the CT(B) emission in [bmMim][Tf(2)N]. The solvation dynamics in this IL has been studied by following the dynamic fluorescence Stokes shift of C153, which is used as a probe molecule. A comparison of the excited state reaction time and solvation time suggests that the rate of the CT(A) --> CT(B) reaction in moderately viscous ILs is primarily dictated by the rate of solvation. Very little or negligible excitation wavelength dependence of the emission behavior of CVL can be observed in these ILs.

11.
J Phys Chem B ; 114(5): 1967-74, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20088564

RESUMO

The fluorescence behavior of 4-(N,N'-dimethylamino) benzonitrile has been studied in room temperature ionic liquids (ILs) as a function of temperature, excitation wavelength, and exposure time. Dual emission from the locally excited (LE) and intramolecular charge transfer (ICT) states of the molecule has been observed and the relative intensities of the two emission bands and the peak position of the ICT emission are found consistent with the viscosity and polarity of the ILs. Temperature dependence study reveals a blue shift of the ICT emission peak with lowering of temperature indicating that under this condition the emission occurs from incompletely solvated state of the molecule. The observed excitation wavelength dependence of the emission behavior has been attributed to the microheterogeneity of the media. Exposure of the solution to the exciting radiation under very mild condition is found to influence the relative intensities of the two emission bands; an enhancement of the LE emission accompanied by a slight decrease of the ICT emission is observed. The emission intensities, however, return almost to their original values when the exposed solution is kept in the dark. The observation has been attributed to photoreaction of the exposed molecules and the recovery to replenishment of phototransformed molecules by the surrounding unexposed molecules. Fluorescence recovery after photobleaching has been studied by multiphoton confocal fluorescence microscopic technique to obtain insight into the recovery dynamics. The diffusion coefficient estimated from this study is found to be lower than that predicted by the Stokes-Einstein equation by a factor of nearly 7 indicating the microheterogeneous nature of the ILs.


Assuntos
Corantes Fluorescentes/química , Líquidos Iônicos/química , Nitrilas/química , Fotodegradação , Espectrometria de Fluorescência , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...