Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 426: 108639, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347124

RESUMO

Postmortem examination of the cochlea with a cochlear implant in the scala tympani presents several challenges. It is technologically difficult to section a cochlea with an implant due to the presence of its wires and metal components that are adjacent to the membranous and bony tissues of the cochlea. These metal components damage traditional steel blades of a microtome in celloidin, paraffin or frozen embedded tissues. However, plastic embedded implanted cochleas have been successfully sectioned using specialized methods (Irving et al., 2013). An alternative non-destructive method is to optically section a chemically cleared cochlea using light-sheet microscopy, which we will describe in this publication. However, since this method uses a light-sheet to section the cochlea the opaque and reflective metal components of the implant results in some artifacts in the 2D optical sections. The best image quality using light-sheet fluorescent microscopy is when the implant is removed prior to imaging.


Assuntos
Implante Coclear , Implantes Cocleares , Cobaias , Animais , Camundongos , Rampa do Tímpano , Cóclea/diagnóstico por imagem , Microscopia de Fluorescência
2.
J Vis Exp ; (187)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36282698

RESUMO

Deafness is the most common sensory impairment, affecting approximately 5% or 430 million people worldwide as per the World Health Organization1. Aging or presbycusis is a primary cause of sensorineural hearing loss and is characterized by damage to hair cells, spiral ganglion neurons (SGNs), and the stria vascularis. These structures reside within the cochlea, which has a complex, spiral-shaped anatomy of membranous tissues suspended in fluid and surrounded by bone. These properties make it technically difficult to investigate and quantify histopathological changes. To address this need, we developed a light-sheet microscope (TSLIM) that can image and digitize the whole cochlea to facilitate the study of structure-function relationships in the inner ear. Well-aligned serial sections of the whole cochlea result in a stack of images for three-dimensional (3D) volume rendering and segmentation of individual structures for 3D visualization and quantitative analysis (i.e., length, width, surface, volume, and number). Cochleae require minimal processing steps (fixation, decalcification, dehydration, staining, and optical clearing), all of which are compatible with subsequent high-resolution imaging by scanning and transmission electron microscopy. Since all the tissues are present in the stacks, each structure can be assessed individually or relative to other structures. In addition, since imaging uses fluorescent probes, immunohistochemistry and ligand binding can be used to identify specific structures and their 3D volume or distribution within the cochlea. Here we used TSLIM to examine cochleae from aged mice to quantify the loss of hair cells and spiral ganglion neurons. In addition, advanced analyses (e.g., cluster analysis) were used to visualize local reductions of spiral ganglion neurons in Rosenthal's canal along its 3D volume. These approaches demonstrate TSLIM microscopy's ability to quantify structure-function relationships within and between cochleae.


Assuntos
Cóclea , Corantes Fluorescentes , Camundongos , Animais , Ligantes , Cóclea/diagnóstico por imagem , Gânglio Espiral da Cóclea/diagnóstico por imagem , Gânglio Espiral da Cóclea/patologia , Microscopia de Fluorescência , Envelhecimento/patologia
3.
Stem Cell Res Ther ; 12(1): 122, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579352

RESUMO

This research is the first to produce induced pluripotent stem cell-derived inner ear sensory neurons in the Neurog1+/- heterozygote mouse using blastocyst complementation. Additionally, this approach corrected non-sensory deficits associated with Neurog1 heterozygosity, indicating that complementation is specific to endogenous Neurog1 function. This work validates the use of blastocyst complementation as a tool to create novel insight into the function of developmental genes and highlights blastocyst complementation as a potential platform for generating chimeric inner ear cell types that can be transplanted into damaged inner ears to improve hearing.


Assuntos
Orelha Interna , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Blastocisto , Quimera , Camundongos , Proteínas do Tecido Nervoso , Células Receptoras Sensoriais
4.
Development ; 146(13)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31152002

RESUMO

The transcription factor sex determining region Y-box 2 (SOX2) is required for the formation of hair cells and supporting cells in the inner ear and is a widely used sensory marker. Paradoxically, we demonstrate via fate mapping that, initially, SOX2 primarily marks nonsensory progenitors in the mouse cochlea, and is not specific to all sensory regions until late otic vesicle stages. SOX2 fate mapping reveals an apical-to-basal gradient of SOX2 expression in the sensory region of the cochlea, reflecting the pattern of cell cycle exit. To understand SOX2 function, we undertook a timed-deletion approach, revealing that early loss of SOX2 severely impaired morphological development of the ear, whereas later deletions resulted in sensory disruptions. During otocyst stages, SOX2 shifted dramatically from a lateral to medial domain over 24-48 h, reflecting the nonsensory-to-sensory switch observed by fate mapping. Early loss or gain of SOX2 function led to changes in otic epithelial volume and progenitor proliferation, impacting growth and morphological development of the ear. Our study demonstrates a novel role for SOX2 in early otic morphological development, and provides insights into the temporal and spatial patterns of sensory specification in the inner ear.


Assuntos
Cóclea/embriologia , Orelha Interna/embriologia , Células Ciliadas Auditivas/fisiologia , Morfogênese/genética , Fatores de Transcrição SOXB1/fisiologia , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Cóclea/citologia , Orelha Interna/crescimento & desenvolvimento , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Células Ciliadas Auditivas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Fatores de Transcrição SOXB1/genética , Fatores de Tempo
5.
Cell Tissue Res ; 372(3): 445-456, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460002

RESUMO

TMPRSS3 (Trans-membrane Serine Protease 3) is a type II trans-membrane serine protease that has proteolytic activity essential for hearing. Mutations in the gene cause non-syndromic autosomal recessive deafness (DFNB8/10) in humans. Knowledge about its cellular distribution in the human inner ear may increase our understanding of its physiological role and involvement in deafness, ultimately leading to therapeutic interventions. In this study, we used super-resolution structured illumination microscopy for the first time together with transmission electron microscopy to localize the TMPRSS3 protein in the human organ of Corti. Archival human cochleae were dissected out during petroclival meningioma surgery. Microscopy with Zeiss LSM710 microscope achieved a lateral resolution of approximately 80 nm. TMPRSS3 was found to be associated with actin in both inner and outer hair cells. TMPRSS3 was located in cell surface-associated cytoskeletal bodies (surfoskelosomes) in inner and outer pillar cells and Deiters cells and in subcuticular organelles in outer hair cells. Our results suggest that TMPRSS3 proteolysis is linked to hair cell sterociliary mechanics and to the actin/microtubule networks that support cell motility and integrity.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Órgão Espiral/enzimologia , Serina Endopeptidases/metabolismo , Actinas/metabolismo , Adulto , Idoso , Feminino , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Masculino , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Pessoa de Meia-Idade , Órgão Espiral/citologia , Órgão Espiral/ultraestrutura
6.
J Assoc Res Otolaryngol ; 17(3): 159-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27029011

RESUMO

Decellularized tissues have been used to investigate the extracellular matrix (ECM) in a number of different tissues and species. Santi and Johnson JARO 14:3-15 (2013) first described the decellularized inner ear in the mouse, rat, and human using scanning thin-sheet laser imaging microscopy (sTSLIM). The purpose of the present investigation is to examine decellularized cochleas in the mouse and human at higher resolution using scanning electron microscopy (SEM). Fresh cochleas were harvested and decellularized using detergent extraction methods. Following decellularization, the ECM of the bone, basilar membrane, spiral limbus, and ligament remained, and all of the cells were removed from the cochlea. A number of similarities and differences in the ECM of the mouse and human were observed. A novel, spirally directed structure was present on the basilar membrane and is located at the border between Hensen and Boettcher cells. These septa-like structures formed a single row in the mouse and multiple rows in the human. The basal lamina of the stria vascularis capillaries was present and appeared thicker in the human compared with the mouse. In the mouse, numerous openings beneath the spiral prominence that previously housed the root processes of the external sulcus cells were observed but in the human there was only a single row of openings. These and other anatomical differences in the ECM between the mouse and human may reflect functional differences and/or be due to aging; however, decellularized cochleas provide a new way to examine the cochlear ECM and reveal new observations.


Assuntos
Cóclea/ultraestrutura , Matriz Extracelular/ultraestrutura , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Estria Vascular/ultraestrutura
7.
Cell Tissue Res ; 365(1): 13-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26941236

RESUMO

Globally 360 million people have disabling hearing loss and, of these, 32 million are children. Human hearing relies on 15,000 hair cells that transduce mechanical vibrations to electrical signals in the auditory nerve. The process is powered by the endo-cochlear potential, which is produced by a vascularized epithelium that actively transports ions in conjunction with a gap junction (GJ) system. This "battery" is located "off-site" in the lateral wall of the cochlea. The GJ syncytium contains the GJ protein genes beta 2 (GJB2/connexin26 (Cx26)) and 6 (GJB6/connexin30 (Cx30)), which are commonly involved in hereditary deafness. Because the molecular arrangement of these proteins is obscure, we analyze GJ protein expression (Cx26/30) in human cochleae by using super-resolution structured illumination microscopy. At this resolution, the Cx26 and Cx30 proteins were visible as separate plaques, rather than being co-localized in heterotypic channels, as previously suggested. The Cx26 and Cx30 proteins thus seem not to be co-expressed but to form closely associated assemblies of GJ plaques. These results could assist in the development of strategies to treat genetic hearing loss in the future.


Assuntos
Cóclea/metabolismo , Conexina 26/metabolismo , Conexinas/metabolismo , Microscopia de Fluorescência/métodos , Adulto , Idoso , Cóclea/ultraestrutura , Conexina 30 , Feminino , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Canais de Potássio/metabolismo
9.
Cell Tissue Res ; 362(3): 513-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26085343

RESUMO

Auditory sensitivity and frequency resolution depend on the physical properties of the basilar membrane in combination with outer hair cell-based amplification in the cochlea. The physiological role of the tectorial membrane (TM) in hair cell transduction has been controversial for decades. New insights into the TM structure and function have been gained from studies of targeted gene disruption. Several missense mutations in genes regulating the human TM structure have been described with phenotypic expressions. Here, we portray the remarkable gradient structure and molecular organization of the human TM. Ultrastructural analysis and confocal immunohistochemistry were performed in freshly fixed human cochleae obtained during surgery. Based on these findings and recent literature, we discuss the role of human TMs in hair cell activation. Moreover, the outcome proposes that the α-tectorin-positive amorphous layer of the human TM is replenished and partly undergoes regeneration during life.


Assuntos
Membrana Tectorial/anatomia & histologia , Membrana Tectorial/ultraestrutura , Adulto , Idoso , Proteínas da Matriz Extracelular/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestrutura , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estereocílios/metabolismo , Estereocílios/ultraestrutura , Membrana Tectorial/citologia
10.
Cell Tissue Res ; 360(2): 245-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25663274

RESUMO

INTRODUCTION: Cochlear micromechanics and frequency tuning depend on the macromolecular organization of the basilar membrane (BM), which is still unclear in man. Novel techniques in cochlear implantation (CI) motivate further analyses of the BM. MATERIALS AND METHODS: Normal cochleae from patients undergoing removal of life-threatening petro-clival meningioma and an autopsy specimen from a normal human were used. Laser-confocal microscopy, high resolution scanning (SEM) and transmission electron microscopy (TEM) were carried out in combination. In addition, one human temporal bone was decellularized and investigated by SEM. RESULTS: The human BM consisted in four separate layers: (1) epithelial basement membrane positive for laminin-ß2 and collagen IV, (2) BM "proper" composed of radial fibers expressing collagen II and XI, (3) layer of collagen IV and (4) tympanic covering layer (TCL) expressing collagen IV, fibronectin and integrin. BM thickness varied both radially and longitudinally (mean 0.55-1.16 µm). BM was thinnest near the OHC region and laterally. CONCLUSIONS: There are several important similarities and differences between the morphology of the BM in humans and animals. Unlike in animals, it does not contain a distinct pars tecta (arcuate) and pectinata. Its width increases and thickness decreases as it travels apically in the cochlea. Findings show that the human BM is thinnest and probably most vibration-sensitive at the outer pillar feet/Deiter cells at the OHCs. The inner pillar and IHCs seem situated on a fairly rigid part of the BM. The gradient design of the BM suggests that its vulnerability increases apical wards when performing hearing preservation CI surgery.


Assuntos
Membrana Basilar/ultraestrutura , Implante Coclear , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
11.
Otol Neurotol ; 35(7): 1145-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914787

RESUMO

HYPOTHESIS: Thin-sheet laser imaging microscopy (TSLIM) optical sectioning can be used to assess temporal bone soft tissue morphology before celloidin sectioning. BACKGROUND: Traditional human temporal bone (TB) celloidin embedding and sectioning is a lengthy and involved process. Although bone morphology can be assessed with microCT before traditional histology, soft tissue structures are difficult to resolve until after celloidin sectioning. A potential solution is TSLIM, a high-resolution, nondestructive optical sectioning technique first developed to image bone and soft tissue in animal cochleae. METHODS: Two temporal bones from 1 individual were used to evaluate TSLIM's capacity to image human temporal bones (bone and soft tissue) before traditional histology. The right TB was trimmed to the cochlea, prepared for and imaged with TSLIM, then processed for celloidin sectioning. The left TB, serving as a control, was directly prepared for traditional celloidin sectioning. RESULTS: TSLIM imaging of the right TB showed adequate resolution of all major tissue structures but barely resolved cells. Celloidin sections produced from the TSLIM-imaged right TB were equivalent in cytologic detail to those from the traditionally prepared left TB. TSLIM 3-dimensional (3D) reconstructions were superior to those obtained from celloidin sections because TSLIM produced many more sections that were without mechanical sectioning artifacts or alignment issues. CONCLUSION: TSLIM processing disturbs neither gross nor detailed morphology and integrates well with celloidin histology, making it an ideal method to image soft tissue before celloidin sectioning.


Assuntos
Técnicas Histológicas/métodos , Imagem Óptica/métodos , Osso Temporal/patologia , Humanos , Microscopia Confocal/métodos
12.
J Assoc Res Otolaryngol ; 15(5): 707-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24952083

RESUMO

The blood vessels that supply the inner ear form a barrier between the blood and the inner ear fluids to control the exchange of solutes, protein, and water. This barrier, called the blood-labyrinth barrier (BLB) is analogous to the blood-brain barrier (BBB), which plays a critical role in limiting the entry of inflammatory and infectious agents into the central nervous system. We have developed an in vivo method to assess the functional integrity of the BLB by injecting sodium fluorescein into the systemic circulation of mice and measuring the amount of fluorescein that enters perilymph in live animals. In these experiments, perilymph was collected from control and experimental mice in sequential samples taken from the posterior semicircular canal approximately 30 min after systemic fluorescein administration. Perilymph fluorescein concentrations in control mice were compared with perilymph fluorescein concentrations after lipopolysaccharide (LPS) treatment (1 mg/kg IP daily for 2 days). The concentration of perilymphatic fluorescein, normalized to serum fluorescein, was significantly higher in LPS-treated mice compared to controls. In order to assess the contributions of perilymph and endolymph in our inner ear fluid samples, sodium ion concentration of the inner ear fluid was measured using ion-selective electrodes. The sampled fluid from the posterior semicircular canal demonstrated an average sodium concentration of 145 mM, consistent with perilymph. These experiments establish a novel technique to assess the functional integrity of the BLB using quantitative methods and to provide a comparison of the BLB to the BBB.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Orelha Interna/metabolismo , Fluoresceína/metabolismo , Lipopolissacarídeos/farmacologia , Perilinfa/metabolismo , Animais , Cóclea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Sódio/metabolismo
13.
Otolaryngol Head Neck Surg ; 150(4): 666-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24415490

RESUMO

OBJECTIVE: Administration of an aminoglycoside antibiotic and loop diuretic causes damage to hair cells in the organ of Corti, resulting in their death and the death of their corresponding spiral ganglion neurons. While this phenomenon has been studied previously, analysis of its effects in the whole cochlea has not been reported. The authors sought to evaluate the effects of a combination dose of kanamycin and furosemide in mice cochlea using an imaging system and computer analysis that allowed for nondestructive, whole-cochlea visualization. STUDY DESIGN: Study using an animal model. SETTING: Cochlear analysis laboratory. SUBJECTS AND METHODS: Five mice received kanamycin and furosemide and 3 mice received saline. Cochleas were harvested and imaged with scanning thin-sheet laser imaging microscopy (sTSLIM) to analyze sensory cells and cochlea structures. RESULTS: The drug-treated animals showed substantial loss of inner hair cells and complete outer hair cell loss. All treated mice showed spiral ganglion neuron loss with fewer neurons than control animals and decreased cell density in the middle turn of the cochlea. The spiral ligament and spiral limbus in the treated animals also showed a decrease in fibrocyte cell density in the middle to apical portion of the cochlea. The stria vascularis appeared normal in all animals. CONCLUSION: Imaging methods that allow for whole-cochlea analysis provide insight into changes that occur in the cochlea after ototoxic insult. Trends that may not be apparent in cross-section samples of the cochlea can be observed. Computer analysis of these trends allows them to be assessed accurately.


Assuntos
Cóclea/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Canamicina/toxicidade , Órgão Espiral/efeitos dos fármacos , Animais , Cóclea/diagnóstico por imagem , Cóclea/ultraestrutura , Doenças Cocleares/induzido quimicamente , Doenças Cocleares/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Furosemida/farmacologia , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/ultraestrutura , Injeções Subcutâneas , Canamicina/farmacologia , Camundongos , Camundongos Endogâmicos CBA , Microscopia Confocal/métodos , Órgão Espiral/diagnóstico por imagem , Órgão Espiral/patologia , Radiografia , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Ultrassonografia
14.
J Histochem Cytochem ; 61(5): 382-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23360693

RESUMO

We made a qualitative and quantitative comparison between a state-of-the-art implementation of micro-Computed Tomography (microCT) and the scanning Thin-Sheet Laser Imaging Microscopy (sTSLIM) method, applied to mouse cochleae. Both imaging methods are non-destructive and perform optical sectioning, respectively, with X-rays and laser light. MicroCT can be used on fresh or fixed tissue samples and is primarily designed to image bone rather than soft tissues. It requires complex back-projection algorithms to produce a two-dimensional image, and it is an expensive instrument. sTSLIM requires that a specimen be chemically fixed, decalcified, and cleared; but it produces high-resolution images of soft and bony tissues with minimum image postprocessing and is less expensive than microCT. In this article, we discuss the merits and disadvantages of each method individually and when combined.


Assuntos
Cóclea/citologia , Cóclea/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microtomografia por Raio-X/métodos , Animais , Imageamento Tridimensional/instrumentação , Camundongos , Microscopia Confocal/instrumentação , Microtomografia por Raio-X/instrumentação
15.
J Assoc Res Otolaryngol ; 14(1): 3-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23085833

RESUMO

Permanent sensorineural hearing loss is a major medical problem and is due to the loss of hair cells and subsequently spiral ganglion neurons in the cochlea. Since these cells lack the capacity of renewal in mammals, their regeneration would be an optimal solution to reverse hearing loss. In other tissues, decellularized extracellular matrix (ECM) has been used as a mechanical and biochemical scaffold for the induction of stem and other cells toward a target tissue phenotype. Such induced cells have been used for tissue and organ transplants in preclinical animal and human clinical applications. This paper reports for the first time the decellularization of the cochlea and identification of remaining laminin and collagen type IV as a first step in preparing an ECM scaffold for directing stem cells toward an auditory lineage. Fresh ear tissues were removed from euthanized mice, a rat and a human and processed for decellularization using two different detergent extraction methods. Cochleas were imaged with scanning thin-sheet laser imaging microscopy (sTSLIM) and brightfield microscopy. Detergent treatment of fresh tissue removed all cells as evidenced by lack of H&E and DNA staining of the membranous labyrinth while preserving components of the ECM. The organ of Corti was completely removed, as were spiral ganglion neurons, which appeared as hollow sheaths and tubes of basal lamina (BL) material. Cells of the stria vascularis were removed and its only vestige left was its laterally linking network of capillary BL that appeared to "float" in the endolymphatic space. Laminin and type IV collagen were detected in the ECM after decellularization and were localized in vascular, neural and epithelial BL. Further work is necessary to attempt to seed neural and other stem cells into the decellularized ECM to hopefully induce differentiation and subsequent in vivo engraftment into damaged cochleas.


Assuntos
Diferenciação Celular , Cóclea/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Humanos , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Modelos Animais , Órgão Espiral/citologia , Ratos , Ratos Sprague-Dawley , Estria Vascular/citologia
16.
Biomed Opt Express ; 3(1): 170-7, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22254177

RESUMO

We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts.

17.
Dev Dyn ; 241(3): 465-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22271591

RESUMO

BACKGROUND: The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. RESULTS: Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. CONCLUSIONS: Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings.


Assuntos
Orelha Interna/embriologia , Orelha Interna/ultraestrutura , Animais , Cóclea/embriologia , Cóclea/inervação , Cóclea/ultraestrutura , Orelha Interna/inervação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Morfogênese
18.
Hear Res ; 278(1-2): 34-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21420476

RESUMO

Thin-sheet laser imaging microscopy (TSLIM) was used to serially section five whole cochleas from 4-wk-old CBA/JCr mice. Three-dimensional reconstructions of Rosenthal's canal (RC) were produced in order to measure canal length and volume, to generate orthogonal cross sections for area measurements, and to determine spiral ganglion neuron (SGN) number. RC length averaged 2.0 mm ± 0.04 (SEM) as measured along the centroid of the canal compared to an average basilar membrane (BM) length of 5.9 ± 0.05 (SEM). RC volume averaged 0.036 mm(3) ± 0.009 (SEM). Significant increases in the radial area of RC were observed at the base (13%), middle (62%), and apex (90%) of its length. The total number of spiral ganglion neurons (SGNs) in RC in each of the five animals averaged 8626 ± 96 (SEM). SGN number increased at the expanded regions of RC. Increased area and cell number at the base and apex are likely related to extensions of the organ of Corti past the length of RC in these areas. The increase in area and cell number in the middle of the RC appears to be related to the most sensitive frequency region of the organ of Corti. Volume imaging or tomography of the cochlea as provided by TSLIM has the potential to be an efficient and accurate semi-automated method for the quantitative assessment of the number of SGNs and hair cells of the organ of Corti.


Assuntos
Gânglio Espiral da Cóclea/anatomia & histologia , Animais , Contagem de Células , Feminino , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos CBA , Microscopia Confocal , Modelos Anatômicos , Modelos Neurológicos , Neurônios/citologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/inervação
19.
Dev Dyn ; 240(6): 1373-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21448975

RESUMO

Ear development requires interactions of transcription factors for proliferation and differentiation. The proto-oncogene N-Myc is a member of the Myc family that regulates proliferation. To investigate the function of N-Myc, we conditionally knocked out N-Myc in the ear using Tg(Pax2-Cre) and Foxg1(KiCre). N-Myc CKOs had reduced growth of the ear, abnormal morphology including fused sensory epithelia, disrupted histology, and disorganized neuronal innervation. Using Thin-Sheet Laser Imaging Microscopy (TSLIM), 3D reconstruction and quantification of the cochlea revealed a greater than 50% size reduction. Immunochemistry and in situ hybridization showed a gravistatic organ-cochlear fusion and a "circularized" apex with no clear inner and outer hair cells. Furthermore, the abnormally developed cochlea had cross innervation from the vestibular ganglion near the basal tip. These findings are put in the context of the possible functional relationship of N-Myc with a number of other cell proliferative and fate determining genes during ear development.


Assuntos
Orelha/embriologia , Epitélio/embriologia , Deleção de Genes , Genes myc/genética , Células Receptoras Sensoriais/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Simulação por Computador , Orelha/anatomia & histologia , Orelha/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes , Genes myc/fisiologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Células Receptoras Sensoriais/metabolismo
20.
J Histochem Cytochem ; 59(2): 129-38, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21339178

RESUMO

Light sheet fluorescence microscopy (LSFM) functions as a non-destructive microtome and microscope that uses a plane of light to optically section and view tissues with subcellular resolution. This method is well suited for imaging deep within transparent tissues or within whole organisms, and because tissues are exposed to only a thin plane of light, specimen photobleaching and phototoxicity are minimized compared to wide-field fluorescence, confocal, or multiphoton microscopy. LSFMs produce well-registered serial sections that are suitable for three-dimensional reconstruction of tissue structures. Because of a lack of a commercial LSFM microscope, numerous versions of light sheet microscopes have been constructed by different investigators. This review describes development of the technology, reviews existing devices, provides details of one LSFM device, and shows examples of images and three-dimensional reconstructions of tissues that were produced by LSFM.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Animais , Processamento de Imagem Assistida por Computador , Lasers , Microscopia de Fluorescência/instrumentação , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...